Volume 13 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
WANG Rongqing, XIE Jingyang, TIAN Biao, et al. Integrated jamming perception and parameter estimation method for anti-interrupted sampling repeater jamming[J]. Journal of Radars, 2024, 13(6): 1337–1354. doi: 10.12000/JR24153
Citation: WANG Rongqing, XIE Jingyang, TIAN Biao, et al. Integrated jamming perception and parameter estimation method for anti-interrupted sampling repeater jamming[J]. Journal of Radars, 2024, 13(6): 1337–1354. doi: 10.12000/JR24153

Integrated Jamming Perception and Parameter Estimation Method for Anti-interrupted Sampling Repeater Jamming

DOI: 10.12000/JR24153
Funds:  The National Natural Science Foundation of China (62371477), Guangdong Science and Technology Program (2019ZT08X751), Shenzhen Science and Technology Program (KQTD20190929172704911)
More Information
  • Corresponding author: TIAN Biao, tianb28@mail.sysu.edu.cn
  • Received Date: 2024-08-07
  • Rev Recd Date: 2024-09-12
  • Available Online: 2024-09-17
  • Publish Date: 2024-10-11
  • Interrupted Sampling Repeater Jamming (ISRJ) is a type of intra-pulse coherent jamming that can easily generate false targets resembling real ones, thus posing a severe threat to radar systems. Traditional methods for countering ISRJ techniques are relatively passive and often fail to adapt to evolving jamming techniques, leading to residual jamming effects and signal loss. To improve radar’s anti-jamming capabilities, a novel scheme integrating “jamming perception, parameter estimation, and jamming suppression” has been developed in this study. This method begins by using a bidirectional double sliding window pulse edge detector and a sliding truncated matched filter. These devices are used to extract the ISRJ components of received radar signals and accurately estimate the parameters such as sampling duration and period. The jamming components are then reconstructed and eliminated, allowing for effective target detection. Simulation experiments demonstrate that the proposed method effectively overcomes ISRJ across different modulation modes with almost no loss of signal energy. When the jamming-to-noise ratio is 9 dB, the method boosts the signal-to-jamming ratio by over 33 dB after jamming suppression, ensuring robust anti-ISRJ performance.

     

  • loading
  • [1]
    ARIK M and AKAN O B. Enabling cognition on electronic countermeasure systems against next-generation radars[C]. MILCOM 2015-2015 IEEE Military Communications Conference, Tampa, USA, 2015: 1103–1108. doi: 10.1109/MILCOM.2015.7357593.
    [2]
    HEAGNEY C P. Digital radio frequency memory synthetic instrument enhancing US navy automated test equipment mission[J]. IEEE Instrumentation & Measurement Magazine, 2018, 21(4): 41–63. doi: 10.1109/MIM.2018.8423745.
    [3]
    LEWIS G K, BAHL I J, GRIFFIN E L, et al. GaAs MMIC’s for digital radio frequency memory (DRFM) subsystems[J]. IEEE Transactions on Microwave Theory and Techniques, 1987, 35(12): 1477–1485. doi: 10.1109/TMTT.1987.1133878.
    [4]
    WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China Series F: Information Sciences, 2007, 50(1): 113–123. doi: 10.1007/s11432-007-2017-y.
    [5]
    OLIVIER K, CILLIERS J E, and DU PLESSIS M. Design and performance of wideband DRFM for radar test and evaluation[J]. Electronics Letters, 2011, 47(14): 824–825. doi: 10.1049/el.2011.0362.
    [6]
    张建中, 穆贺强, 文树梁, 等. 基于脉内LFM-Costas频率步进的抗间歇采样干扰方法[J]. 系统工程与电子技术, 2019, 41(10): 2170–2177. doi: 10.3969/j.issn.1001-506X.2019.10.03.

    ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling jamming method based on intra-pulse LFM-Costas frequency stepping[J]. Systems Engineering and Electronics, 2019, 41(10): 2170–2177. doi: 10.3969/j.issn.1001-506X.2019.10.03.
    [7]
    ZHANG Yang, YU Lei, and WEI Yinsheng. Interrupted sampling repeater jamming countermeasure technology based on random interpulse frequency coding LFM signal[J]. Digital Signal Processing, 2022, 131: 103755. doi: 10.1016/j.dsp.2022.103755.
    [8]
    周畅, 汤子跃, 余方利, 等. 基于脉内正交的抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06.

    ZHOU Chang, TANG Ziyue, YU Fangli, et al. Anti intermittent sampling repeater jamming method based on intrapulse orthogonality[J]. Systems Engineering and Electronics, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06.
    [9]
    ZHANG Jiaxiang and ZHOU Chao. Interrupted sampling repeater jamming suppression method based on hybrid modulated radar signal[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–4. doi: 10.1109/ICSIDP47821.2019.9173093.
    [10]
    ZHANG Yang, WEI Yinsheng, and YU Lei. Interrupted sampling repeater jamming recognition and suppression based on phase-coded signal processing[J]. Signal Processing, 2022, 198: 108596. doi: 10.1016/j.sigpro.2022.108596.
    [11]
    刘智星, 杜思予, 吴耀君, 等. 脉间-脉内捷变频雷达抗间歇采样干扰方法[J]. 雷达学报, 2022, 11(2): 301–312. doi: 10.12000/JR22001.

    LIU Zhixing, DU Siyu, WU Yaojun, et al. Anti-interrupted sampling repeater jamming method for interpulse and intrapulse frequency-agile radar[J]. Journal of Radars, 2022, 11(2): 301–312. doi: 10.12000/JR22001.
    [12]
    LIU Zhixing, QUAN Yinghui, DU Siyu, et al. A novel ECCM scheme against interrupted-sampling repeater jamming using intra-pulse dual-parameter agile waveform[J]. Digital Signal Processing, 2022, 129: 103652. doi: 10.1016/j.dsp.2022.103652.
    [13]
    ZHOU Kai, LI Dexin, SU Yi, et al. Joint design of transmit waveform and mismatch filter in the presence of interrupted sampling repeater jamming[J]. IEEE Signal Processing Letters, 2020, 27: 1610–1614. doi: 10.1109/LSP.2020.3021667.
    [14]
    ZHOU Kai, LI Dexin, QUAN Sinong, et al. SAR waveform and mismatched filter design for countering interrupted-sampling repeater jamming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5214514. doi: 10.1109/TGRS.2021.3107328.
    [15]
    WANG Fulai, LI Nanjun, PANG Chen, et al. Complementary sequences and receiving filters design for suppressing interrupted sampling repeater jamming[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4022305. doi: 10.1109/LGRS.2022.3156164.
    [16]
    盖季妤, 姜维, 张凯翔, 等. 基于差分特征的间歇采样转发干扰辨识与抑制方法[J]. 雷达学报, 2023, 12(1): 186–196. doi: 10.12000/JR22058.

    GAI Jiyu, JIANG Wei, ZHANG Kaixiang, et al. A method for interrupted-sampling repeater jamming identification and suppression based on differential features[J]. Journal of Radars, 2023, 12(1): 186–196. doi: 10.12000/JR22058.
    [17]
    CHEN Jian, WU Wenzhen, XU Shiyou, et al. Band pass filter design against interrupted-sampling repeater jamming based on time-frequency analysis[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1646–1654. doi: 10.1049/iet-rsn.2018.5658.
    [18]
    周超, 刘泉华, 胡程. 间歇采样转发式干扰的时频域辨识与抑制[J]. 雷达学报, 2019, 8(1): 100–106. doi: 10.12000/JR18080.

    ZHOU Chao, LIU Quanhua, and HU Cheng. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming[J]. Journal of Radars, 2019, 8(1): 100–106. doi: 10.12000/JR18080.
    [19]
    张建中, 穆贺强, 文树梁, 等. 基于脉内步进LFM时频分析的抗间歇采样干扰方法[J]. 北京理工大学学报, 2020, 40(5): 543–551. doi: 10.15918/j.tbit1001-0645.2018.202.

    ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling repeater jamming method based on stepped LFM joint time-frequency analysis[J]. Transactions of Beijing Institute of Technology, 2020, 40(5): 543–551. doi: 10.15918/j.tbit1001-0645.2018.202.
    [20]
    杜思予, 刘智星, 吴耀君, 等. 频率捷变波形联合时频滤波器抗间歇采样转发干扰[J]. 系统工程与电子技术, 2023, 45(12): 3819–3827. doi: 10.12305/j.issn.1001-506X.2023.12.11.

    DU Siyu, LIU Zhixing, WU Yaojun, et al. Frequency agility waveform combined with time-frequency filter to suppress interrupted-sampling repeater jamming[J]. Systems Engineering and Electronics, 2023, 45(12): 3819–3827. doi: 10.12305/j.issn.1001-506X.2023.12.11.
    [21]
    ZHENG Hao, JIU Bo, and LIU Hongwei. Waveform design based ECCM scheme against interrupted sampling repeater jamming for wideband MIMO radar in multiple targets scenario[J]. IEEE Sensors Journal, 2022, 22(2): 1652–1669. doi: 10.1109/JSEN.2021.3131491.
    [22]
    WEI Zhenhua, LIU Zhen, PENG Bo, et al. ECCM scheme against interrupted sampling repeater jammer based on parameter-adjusted waveform design[J]. Sensors, 2018, 18(4): 1141. doi: 10.3390/s18041141.
    [23]
    ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114.
    [24]
    LU Lu and GAO Meiguo. A truncated matched filter method for interrupted sampling repeater jamming suppression based on jamming reconstruction[J]. Remote Sensing, 2022, 14(1): 97. doi: 10.3390/rs14010097.
    [25]
    周超, 刘泉华, 曾涛. DRFM间歇采样转发式干扰辨识算法研究[J]. 信号处理, 2017, 33(7): 911–917. doi: 10.16798/j.issn.1003-0530.2017.07.002.

    ZHOU Chao, LIU Quanhua, and ZENG Tao. Research on DRFM repeater jamming recognition[J]. Journal of Signal Processing, 2017, 33(7): 911–917. doi: 10.16798/j.issn.1003-0530.2017.07.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(492) PDF downloads(363) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint