YU Wenxian. Automatic target recognition from an engineering perspective[J]. Journal of Radars, 2022, 11(5): 737–752. doi: 10.12000/JR22178
Citation: Wei Yi-wen, Guo Li-xin, Yin Hong-cheng. Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave[J]. Journal of Radars, 2015, 4(3): 326-333. doi: 10.12000/JR15060

Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave

DOI: 10.12000/JR15060
  • Received Date: 2015-05-18
  • Rev Recd Date: 2015-06-15
  • Publish Date: 2015-06-28
  • The internal wave travels beneath the sea surface and modulate the roughness of the sea surface through the wave-current interaction. This makes some dark and bright bands can be observed in the Synthetic Aperture Radar (SAR) images. In this paper, we first establish the profile of the internal wave based on the KdV equations; then, the action balance equation and the wave-current interaction source function are used to modify the sea spectrum; finally, the two-scale theory based facet model is combined with the modified sea spectrum to calculate the scattering characteristics of the sea. We have simulated the scattering coefficient distribution of the sea with an internal wave traveling through. The influence on the scattering coefficients and the Doppler spectra under different internal wave parameters and sea state parameters are analyzed.

     

  • [1]
    Hughes B A and Gower J F. SAR imagery and surface truth comparisons of internal waves in Georgia Strait, British Columbia, Canada[J]. Journal of Geophysical Research Oceans, 1983, 88(C3): 1809-1824.
    [2]
    Hughes B A and Dawson T W. Joint Canada-U.S. ocean wave investigation project: an overview of the Georgia strait experiment[J]. Journal of Geophysical Research Oceans, 1988, 93(C10): 12219-12234.
    [3]
    Gasparovic R F and Etkin V S. An overview of the Joint US/Russia internal wave remote sensing experiment[J]. International Ceoscience and Remote Sensing Symposium, IGARSS'94, 1994, 2: 741-743.
    [4]
    Alpers W. Theory of radar imaging of internal waves[J]. Nature, 1985, 314(6008): 245-247.
    [5]
    West J. Correlation of Bragg scattering from the sea surface at different polarizations[J]. Waves in Random and Complex Media, 2005, 15(3): 345-403.
    [6]
    Zheng Quanan, Yuan Y, and Klemas V. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width[J]. Journal of Geophysical Research Oceans, 2001, 106(C12): 31415-31423.
    [7]
    Brandt P, Romeiser R, and Rubino A. On the dependence of radar signatures of oceanic internal solitary waves on wind conditions and internal wave parameters[J]. 1998 IEEE International Geoscience and Remote Sensing Symposium Proceedings IGARSS'98, 1998, 3: 1662-1664.
    [8]
    李海艳. 利用合成孔径雷达研究海洋内波[D]. [硕士论文], 中 国海洋大学, 2004: 第一章, 11-19. Li Hai-yan. Studying ocean internal waves with SAR[D].[Master dissertation], Ocean University of China, 2004: Chap. 1, 11-19.
    [9]
    Ouyang Yue, Chong Jin-song, and Wu Yi-rong. Simulation studies of internal waves in SAR images under different SAR and wind field conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1734-1743.
    [10]
    Liu A K, Chang Y S, and Hsu M K.
    [11]
    Evolution of nonlinear internal waves in the East and South China Seas[J]. Journal of Geophysical Research Oceans, 1998, 103(C4): 7995-8008.
    [12]
    Fuks I M. Wave diffraction by a rough boundary of an arbitrary plane-layered medium[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(4): 630-639.
    [13]
    陈珲. 动态海面及其上目标复合电磁散射与多普勒谱研究[D].[博士论文], 西安电子科技大学, 2012: 第四章, 70-76. Chen Hui. A study of electromagnetic composite scattering and doppler spectra of a target at time-evolving sea surface[D]. [Ph.D. dissertation], Xidian University, 2012: Chap. 4, 70-76.
    [14]
    Peterson P and Groesen E V. A direct and inverse problem for wave crests modelled by interactions of two solitons[J]. Physica D, 2001, 141(14): 316-332.
    [15]
    Peterson P and Groesen E V. Sensitivity of the inverse wave crest problem[J]. Wave Motion, 2001, 34(4): 391-399.
    [16]
    Peterson P, Soomere T, and Engelbrecht J. Soliton interaction as a possible model for extreme waves in shallow water[J]. Nonlinear Processes in Geophysics, 2003, 10: 503-510.
  • Cited by

    Periodical cited type(7)

    1. 邵帅,邢雷,王峰. 基于遗传算法的机相扫机载预警雷达重点扇区波位排布方法. 中国电子科学研究院学报. 2023(06): 521-524+530 .
    2. 李纪三,刘溶,张宁. 高速旋转相控阵雷达基于资源预规划的任务调度算法. 电子科技大学学报. 2022(03): 377-383+480 .
    3. 李纪三,纪彦星,曹鼎,刘溶,任渊. 基于广义时间窗的旋转相控阵雷达资源调度算法. 电子学报. 2022(05): 1050-1057 .
    4. 鲁金,畅言,陈春. 基于多级时间窗的综合优先级雷达任务调度算法. 火控雷达技术. 2021(03): 39-41+52 .
    5. 柴炎,郑海宾,朱宏梁,张宇. 云平台下自适应调度算法的优化分析. 数码世界. 2019(03): 172 .
    6. 徐玲,祝军. 制药智能工厂生产物流调度系统柔性管控优化算法. 电子技术与软件工程. 2019(22): 102-103 .
    7. 方旖,陈秋菊,潘继飞,毕大平. 基于贝叶斯的多功能雷达脉冲列变化点检测. 指挥与控制学报. 2019(04): 308-315 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3438) PDF downloads(1924) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint