LIU Zhen, SU Xiaolong, LIU Tianpeng, et al. Matrix differencing method for mixed far-field and near-field source localization[J]. Journal of Radars, 2021, 10(3): 432–442. doi: 10.12000/JR20145
Citation: WEI Yangkai, ZENG Tao, CHEN Xinliang, et al. Parametric SAR imaging for typical lines and surfaces[J]. Journal of Radars, 2020, 9(1): 143–153. doi: 10.12000/JR19077

Parametric SAR Imaging for Typical Lines and Surfaces

DOI: 10.12000/JR19077
Funds:  The National key R & D plan (2017YFC0804700), The National Outstanding Youth Fund (61625103), The National Natural Science Foundation of China (91738302, 91438203)
More Information
  • Corresponding author: CHEN Xinliang, chenxinliang@bit.edu.cn
  • Received Date: 2019-08-30
  • Rev Recd Date: 2019-12-04
  • Available Online: 2019-12-20
  • Publish Date: 2020-02-28
  • In the Synthetic Aperture Radar (SAR) remote sensing imagery of complicated scenes (especially urban scenes), there are a large number of lines and surfaces, such as roads in urban areas and the surfaces of buildings. These microwave-signal-scattering features have strong directivity. Traditional SAR acquires the scattering information of a scene from a single observation, and traditional imaging algorithms are based on the point target model, which makes the main features of the lines and surfaces in traditional SAR images appear as a series of strong scattering points rather than line-scattering and surface-scattering features. This outcome ultimately causes the target to be discontinuous in the SAR image, thus making the SAR image difficult to interpret. Therefore, in this study, we conducted an in-depth and meticulous investigation of the SAR imaging mechanism for lines and surfaces by establishing a parametric echo model of typical lines and triangular surfaces. Based on the proposed parametric model, we performed parametric imaging of these lines and surfaces. Based on our results, we propose a parametric imaging method, in which the typical lines and surfaces are classified and determined based on Bayesian theory and the proposed parametric model. Then, an SAR image can be obtained that effectively characterizes the scattering features of the line and surface targets by visual imaging, which effectively facilitates SAR image interpretation. The results of our numerical simulation experiments verify the validity of the proposed method.

     

  • [1]
    CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar[M]. New York, USA: Wiley, 1991.
    [2]
    ZENG Tao, LIU Luosi, and DING Zegang. Improved stepped-frequency SAR imaging algorithm with the range spectral-length extension strategy[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(5): 1483–1494. doi: 10.1109/JSTARS.2012.2196681
    [3]
    DING Zegang, LIU Luosi, ZENG Tao, et al. Improved motion compensation approach for squint airborne SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4378–4387. doi: 10.1109/TGRS.2013.2265327
    [4]
    ZENG Tao, LI Yinghe, DING Zegang, et al. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6718–6734. doi: 10.1109/TGRS.2015.2447393
    [5]
    XU Feng and JIN Yaqiu. Imaging simulation of polarimetric SAR for a comprehensive terrain scene using the mapping and projection algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3219–3234. doi: 10.1109/TGRS.2006.879544
    [6]
    GORHAM L A and MOORE L J. SAR image formation toolbox for MATLAB[C]. The SPIE 7699, Algorithms for Synthetic Aperture Radar Imagery XVII. Orlando, USA, 2010.
    [7]
    CUMMING I G and WONG F H C. Digital Processing of Synthetic Aperture Radar Data[M]. Boston: Artech House, 2005: 3.
    [8]
    FREEMAN A and DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963–973. doi: 10.1109/36.673687
    [9]
    FARRELL T J, PATTERSON M S, and WILSON B. A diffusion theory model of spatially resolved, steady‐state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo[J]. Medical Physics, 1992, 19(4): 879–888. doi: 10.1118/1.596777
    [10]
    MILLER E K and LAGER D L. Inversion of one-dimensional scattering data using Prony’s method[J]. Radio Science, 1982, 17(1): 211–217. doi: 10.1029/RS017i001p00211
    [11]
    POTTER L C, CHIANG D M, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058–1067. doi: 10.1109/8.467641
    [12]
    GERRY M J, POTTER L C, GUPTA I J, et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi: 10.1109/8.785750
    [13]
    SOUMEKH M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms[M]. New York: Wiley, 1999.
    [14]
    ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734
    [15]
    Wei Y, Chen X, Fan Y, et al. Analysis and identification of continuous line target in SAR echo based on sidelobe features[J]. The Journal of Engineering, 2019, 2019(19): 5979–5981. doi: 10.1049/joe.2019.0327
    [16]
    BISHOP C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006, 161–171.
    [17]
    张连文, 郭海鹏. 贝叶斯网引论[M]. 北京: 科学出版社, 2006, 172–180.

    ZHANG Lianwen and GUO Haipeng. Introduction to Bayesian Networks[M]. Beijing: Science Press, 2006, 172–180.
  • Relative Articles

    [1]CHEN Yan, ZHANG Rui, LI Yadong, SONG Ruiyuan, GENG Ruixu, GONG Hanqin, WANG Binquan, ZHANG Dongheng, HU Yang. An Overview of Human Pose Estimation Based on Wireless Signals[J]. Journal of Radars, 2025, 14(1): 229-247. doi: 10.12000/JR24189
    [2]HUANG Datong, XING Shiqi, LIU Yemin, LI Yongzhen, XIAO Shunping. Fake SAR Signal Generation Method Based on Noise Convolution Modulation[J]. Journal of Radars, 2020, 9(5): 898-907. doi: 10.12000/JR20094
    [3]SONG Jiaqi, TAO Haihong. A Fast Parameter Estimation Algorithm for Near-field Non-circular Signals[J]. Journal of Radars, 2020, 9(4): 632-639. doi: 10.12000/JR20053
    [4]XU Shuwen, SHI Xingyu, SHUI Penglang. An Adaptive Detector with Mismatched Signals Rejection in Compound Gaussian Clutter[J]. Journal of Radars, 2019, 8(3): 326-334. doi: 10.12000/JR19030
    [5]YANG Huiting, ZHOU Yu, GU Yabin, ZHANG Linrang. Design of Integrated Radar and Communication Signal Based on Multicarrier Parameter Modulation Signal[J]. Journal of Radars, 2019, 8(1): 54-63. doi: 10.12000/JR18001
    [6]Li Yangyang, Li Wen, Yi Wei, Kong Lingjiang. A Distributed Asynchronous Recursive Filtering Fusion Algorithm via DP-TBD[J]. Journal of Radars, 2018, 7(2): 254-262. doi: 10.12000/JR17057
    [7]Fu Yue, Cui Guolong, Yu Xianxiang. Robust Design of Constant Modulus Sequence and Receiver Filter in the Presence of Signal-dependent Clutter[J]. Journal of Radars, 2017, 6(3): 292-299. doi: 10.12000/JR16158
    [8]Xiong Dingding, Cui Guolong, Kong Lingjiang, Yang Xiaobo. Micro-motion Parameter Estimation in Non-Gaussian Noise via Mutual Correntropy[J]. Journal of Radars, 2017, 6(3): 300-308. doi: 10.12000/JR17007
    [9]Chen Ying, Zhong Fei, Guo Shuxu. Blind Compressed Sensing Parameter Estimation of Non-cooperative Frequency Hopping Signal[J]. Journal of Radars, 2016, 5(5): 531-537. doi: 10.12000/JR15106
    [10]Han Zhuangzhi, Song Chunji, Hou Jianqiang. Analysis of Multiresolution Characteristics of Complex Continuous Wave Signal Modulated by Pseudocode Family[J]. Journal of Radars, 2016, 5(3): 278-283. doi: 10.12000/JR15100
    [11]Zhao Yongsheng, Zhao Yongjun, Zhao Chuang. Weighted Least Squares Algorithm for Single-observer Passive Coherent Location Using DOA and TDOA Measurements[J]. Journal of Radars, 2016, 5(3): 302-311. doi: 10.12000/JR15133
    [12]Wang Wen-qin, Cheng Sheng-juan, Shao Huai-zong. MIMO-OFDM Chirp Waveform Diversity Design and Implementation Based on Sparse Matrix and Correlation Optimization[J]. Journal of Radars, 2015, 4(1): 1-10. doi: 10.12000/JR14148
    [13]Zhou Hao, Hu Guo-ping, Wang Yun. DOA Estimation of Low Altitude Target Based on Adaptive Step Glowworm Swarm Optimization-multiple Signal Classification Algorithm[J]. Journal of Radars, 2015, 4(3): 309-316. doi: 10.12000/JR14142
    [14]Du Jian-bo, Li Dao-jing, Ma Meng. Performance Analysis and Image Processing of Phase-modulated Signal on Airborne Synthetic Aperture Ladar[J]. Journal of Radars, 2014, 3(1): 111-118. doi: 10.3724/SP.J.1300.2014.13094
    [15]Gao Yang, Yu Wei-dong, Feng Jin, Zheng Shi-chao, Yang Liang. A SAR Back Projection Autofocusing Algorithm Based on Legendre Approximation[J]. Journal of Radars, 2014, 3(2): 176-182. doi: 10.3724/SP.J.1300.2014.14011
    [16]Chen Gong-bo, Li Yong, Tao Man-yi. Data Based Parameter Estimation Method for Circular-scanning SAR Imaging[J]. Journal of Radars, 2013, 2(2): 203-209. doi: 10.3724/SP.J.1300.2013.20073
    [17]Wang Ling, Li Guo-lin, Xie Xin, Qi Shuai. Joint 2-D DOA and Noncircularity Phase Estimation Method[J]. Journal of Radars, 2012, 1(1): 43-49. doi: 10.3724/SP.J.1300.2013.20014
    [18]Zhu Ying, Zhang Gong, Zhang Jin-dong. Signal Model and Parameters Estimation of Statistical MIMO Radar Based on Distributed Compressed Sensing[J]. Journal of Radars, 2012, 1(2): 143-148. doi: 10.3724/SP.J.1300.2012.20016
    [19]RAO Yun-Hua, ZHU Feng-Yuan, ZHANG Xiu-Zhi, WAN Xian-Rong, GONG Zi-Ping. Ambiguity Function Analysis and Side Peaks Suppression of WiFi Signal for Passive Radar[J]. Journal of Radars, 2012, 1(3): 225-231. doi: 10.3724/SP.J.1300.2012.20061
    [20]Ren Wen-juan, Hu Dong-hui, Ding Chi-biao. Multi-TDOA Location Algorithm for Three Satellites TDOA Passive Location System[J]. Journal of Radars, 2012, 1(3): 262-269. doi: 10.3724/SP.J.1300.2012.20050
  • Cited by

    Periodical cited type(5)

    1. 马助兴,张立硕,徐红元,郑焕坤,赵智龙,康哲. 面向变电站智能巡检5G大规模MIMO融合定位方法. 全球能源互联网. 2023(03): 308-315 .
    2. 任笑莹,王英民,张立琛,王奇,廉杰. 均匀双圆环阵虚拟成阵方法研究. 水下无人系统学报. 2023(05): 735-745 .
    3. 苏晓龙,户盼鹤,刘天鹏,彭勃,程耘,刘振. 基于深度展开ISTA网络的混合源定位方法. 信号处理. 2022(10): 2082-2091 .
    4. 母采凤,李森,吕梦然. 脉冲噪声环境下基于矩阵差分的远近场混合源定位. 信号处理. 2022(11): 2342-2349 .
    5. 张国鑫,易伟,孔令讲. 基于1比特量化的大规模MIMO雷达系统直接定位算法. 雷达学报. 2021(06): 970-981 . 本站查看

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.5 %FULLTEXT: 15.5 %META: 74.8 %META: 74.8 %PDF: 9.8 %PDF: 9.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.8 %其他: 14.8 %其他: 0.3 %其他: 0.3 %China: 0.5 %China: 0.5 %India: 0.1 %India: 0.1 %Reynoldsburg: 0.1 %Reynoldsburg: 0.1 %[]: 0.4 %[]: 0.4 %上海: 0.3 %上海: 0.3 %上海市: 0.0 %上海市: 0.0 %东莞: 0.7 %东莞: 0.7 %东营: 0.0 %东营: 0.0 %中卫: 0.2 %中卫: 0.2 %九江: 0.1 %九江: 0.1 %佛山: 0.0 %佛山: 0.0 %信阳: 0.1 %信阳: 0.1 %克孜勒苏: 0.0 %克孜勒苏: 0.0 %兰辛: 0.1 %兰辛: 0.1 %兴安盟: 0.0 %兴安盟: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %包头: 0.1 %包头: 0.1 %北京: 12.0 %北京: 12.0 %北京市: 0.0 %北京市: 0.0 %南京: 0.8 %南京: 0.8 %南平: 0.0 %南平: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.1 %台州: 0.1 %合肥: 0.6 %合肥: 0.6 %周口: 0.1 %周口: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.0 %嘉兴: 0.0 %天津: 0.2 %天津: 0.2 %威海: 0.0 %威海: 0.0 %安康: 0.0 %安康: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.0 %宣城: 0.0 %巴中: 0.6 %巴中: 0.6 %巴利亚多利德: 0.0 %巴利亚多利德: 0.0 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %常州: 0.0 %常州: 0.0 %广州: 0.5 %广州: 0.5 %弗吉: 0.0 %弗吉: 0.0 %张家口: 1.6 %张家口: 1.6 %张家口市: 0.1 %张家口市: 0.1 %成都: 0.4 %成都: 0.4 %成都市新都区: 0.0 %成都市新都区: 0.0 %扬州: 0.0 %扬州: 0.0 %斯特灵: 0.0 %斯特灵: 0.0 %新乡: 0.2 %新乡: 0.2 %新加坡: 0.0 %新加坡: 0.0 %无锡: 0.2 %无锡: 0.2 %昆明: 0.2 %昆明: 0.2 %昌吉: 0.0 %昌吉: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.5 %杭州: 0.5 %桂林: 0.2 %桂林: 0.2 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.2 %济南: 0.2 %海口: 0.0 %海口: 0.0 %淮南: 0.0 %淮南: 0.0 %深圳: 0.2 %深圳: 0.2 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.1 %漯河: 0.1 %烟台: 0.1 %烟台: 0.1 %焦作: 0.1 %焦作: 0.1 %珠海: 0.0 %珠海: 0.0 %盐城: 0.1 %盐城: 0.1 %盘锦: 0.0 %盘锦: 0.0 %石家庄: 0.6 %石家庄: 0.6 %石家庄市: 0.0 %石家庄市: 0.0 %红河: 0.0 %红河: 0.0 %约翰内斯堡: 0.1 %约翰内斯堡: 0.1 %纽约: 0.1 %纽约: 0.1 %罗马: 0.2 %罗马: 0.2 %芒廷维尤: 23.2 %芒廷维尤: 23.2 %芝加哥: 0.1 %芝加哥: 0.1 %苏州: 0.0 %苏州: 0.0 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 32.1 %西宁: 32.1 %西安: 0.3 %西安: 0.3 %赣州: 0.1 %赣州: 0.1 %运城: 0.1 %运城: 0.1 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.4 %郑州: 0.4 %金华: 0.0 %金华: 0.0 %金昌: 0.0 %金昌: 0.0 %釜山: 0.3 %釜山: 0.3 %长沙: 0.5 %长沙: 0.5 %长治: 0.0 %长治: 0.0 %青岛: 0.9 %青岛: 0.9 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ChinaIndiaReynoldsburg[]上海上海市东莞东营中卫九江佛山信阳克孜勒苏兰辛兴安盟凤凰城包头北京北京市南京南平台北台州合肥周口呼和浩特哈尔滨嘉兴天津威海安康宝鸡宣城巴中巴利亚多利德巴音郭楞常州广州弗吉张家口张家口市成都成都市新都区扬州斯特灵新乡新加坡无锡昆明昌吉朝阳杭州桂林武汉沈阳洛阳济南海口淮南深圳温州渭南湖州湘潭漯河烟台焦作珠海盐城盘锦石家庄石家庄市红河约翰内斯堡纽约罗马芒廷维尤芝加哥苏州衢州襄阳西宁西安赣州运城邯郸郑州金华金昌釜山长沙长治青岛香港香港特别行政区齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3324) PDF downloads(328) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint