Zhang Ran, Feng Dejun, Xu Letao. Design and Polarization Characteristics Analysis of Dihedral Based on Salisbury Screen[J]. Journal of Radars, 2016, 5(6): 658-665. doi: 10.12000/JR16055
Citation: Li Yangyang, Li Wen, Yi Wei, Kong Lingjiang. A Distributed Asynchronous Recursive Filtering Fusion Algorithm via DP-TBD[J]. Journal of Radars, 2018, 7(2): 254-262. doi: 10.12000/JR17057

A Distributed Asynchronous Recursive Filtering Fusion Algorithm via DP-TBD

DOI: 10.12000/JR17057
Funds:  The Chang Jiang Scholars Program, The Fundamental Research Funds of Central Universities under Grants (ZYGX2016J031), The Chinese Postdoctoral Science Foundation under Grant (2014M550465) and Special Grant (2016T90845)
  • Received Date: 2017-06-14
  • Rev Recd Date: 2017-07-31
  • Publish Date: 2018-04-28
  • In this paper, we address target tracking problems by the use of multiple sensors via the Dynamic Programming (DP)-based Track-Before-Detect (TBD) method. Generally, DP-TBD is a grid-based method that estimates target trajectories by searching all the physically admissible paths in a determinate discrete state space. However, this multi-frame detection algorithm provides plot sequences without filtering or smoothing. With the growing complexity of the battle field environment, single radar based on DP-TBD cannot achieve satisfactory results when the Signal-to-Noise Ratio (SNR) is low. Besides, it is very difficult to fuse plot sequences from different radars because they contain no state error covariance matrix. Furthermore, various radars always contain asynchronous data due to the diversity of sampling times and communication delays. To alleviate these problems, we propose a distributed asynchronous recursive filtering fusion (Dynamic Programming Fuison, DPF) algorithm based on DP-TBD, which is divided into two steps. In the first step, we propose an iterative filter algorithm via DP-TBD. Then, we convert the asynchronous evaluation data into synchronous data and implement several distributed fusion algorithms to estimate the target state. Simulation results show that the proposed algorithm can correctly estimate target trajectories and significantly enhance tracking accuracy compared to solo radar. In addition, this algorithm can decrease the track loss rate and calculation burden.

     

  • [1]
    Bar-Shalom Y and Li Xiao-rong. Multitarget-Multisensor Tracking: Principles and Techniques[M]. Storrs, CT: YBS, 1995.
    [2]
    Bar-Shalom Y and Blair W D. Multitarget-Multisensor Tracking: Applications and Advances, Vol. III[M]. Norwood, MA: Artech House, 2000.
    [3]
    Bar-Shalom Y, Daum F, and Huang J. The probabilistic data association filter[J]. IEEE Control Systems, 2009, 29(6): 82–100. DOI: 10.1109/MCS.2009.934469
    [4]
    Davey S J and Rutten M G. A comparison of three algorithms for tracking dim targets[C]. Proceedings of 2007 IEEE Information, Decision and Control, Adelaide, Australia, 2007: 342–347.
    [5]
    Barniv Y. Dynamic programming solution for detecting dim moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(1): 144–156. DOI: 10.1109/TAES.1985.310548
    [6]
    Barniv Y and Kella O. Dynamic programming solution for detecting dim moving targets part II: Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23(6): 776–788. DOI: 10.1109/TAES.1987.310914
    [7]
    Arnold J, Shaw S W, and Pasternack H. Efficient target tracking using dynamic programming[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 44–56. DOI: 10.1109/7.249112
    [8]
    Tonissen S M and Evans R J. Peformance of dynamic programming techniques for Track-Before-Detect[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1440–1451. DOI: 10.1109/7.543865
    [9]
    Johnston L A and Krishnamurthy V. Performance analysis of a dynamic programming track before detect algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 228–242. DOI: 10.1109/7.993242
    [10]
    Yi Wei, Morelande M R, Kong Ling-jiang, et al. An efficient multi-frame track-before-detect algorithm for multi-target tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 421–434. DOI: 10.1109/JSTSP.2013.2256415
    [11]
    Buzzi S, Lops M, Venturino L, et al. Track-before-detect procedures in a multi-target environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1135–1150. DOI: 10.1109/TAES.2008.4655369
    [12]
    Wallace W R. The use of track-before-detect in pulse-Doppler radar[C]. Proceedings of RADAR 2002, Edinburgh, UK, 2002: 315–319.
    [13]
    Buzzi S, Lops M, and Venturino L. Track-before-detect procedures for early detection of moving target from airborne radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 937–954. DOI: 10.1109/TAES.2005.1541440
    [14]
    Orlando D, Ricci G, and Bar-Shalom Y. Track-before-detect algorithms for targets with Kinematic constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1837–1849. DOI: 10.1109/TAES.2011.5937268
    [15]
    Grossi E, Lops M, and Venturino L. A Novel dynamic programming algorithm for Track-Before-Detect in radar systems[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2608–2619. DOI: 10.1109/TSP.2013.2251338
    [16]
    Yi Wei, Kong Ling-jiang, and Yang Jian-yu. Thresholding process based dynamic programming Track-before-detect algorithm[J]. IEICE Transactions on Communications, 2013, E96.B(1): 291–300. DOI: 10.1587/transcom.E96.B.291
    [17]
    Liu Rui, Yi Wei, Kong Ling-jiang, et al.. Recursive filtering for target tracking in multi-frame Track-Before-Detect[C]. Proceedings of the 2014 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 2014: 1–6.
    [18]
    Fang Zi-cheng, Yi Wei, and Kong Ling-jiang. A tracking approach for low observable target using plot-sequences of multi-frame detection[C]. Proceedings of the 2016 19th International Conference on Information Fusion, Heidelberg, Germany, 2016: 1427–1433.
    [19]
    Govaers F, Rong Yang, Chee L H, et al. Track-before-detect in distributed sensor applications[J]. EURASIP Journal on Advances in Signal Processing, 2011, 2011: 20. DOI: 10.1186/1687-6180-2011-20
    [20]
    Gao Xin-bo, Chen Jin-guang, Tao Da-cheng, et al. Multi-sensor centralized fusion without measurement noise covariance by variational Bayesian approximation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 718–727. DOI: 10.1109/TAES.2011.5705702
    [21]
    Ma Jing and Sun Shu-li. Centralized fusion estimators for multisensor systems with random sensor delays, multiple packet dropouts and uncertain observations[J]. IEEE Sensors Journal, 2013, 13(4): 1228–1235. DOI: 10.1109/JSEN.2012.2227995
    [22]
    Zhai Yan, Yeary M B, Havlicek J P, et al. A new centralized sensor fusion-tracking methodology based on particle filtering for power-aware systems[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(10): 2377–2387. DOI: 10.1109/TIM.2008.919009
    [23]
    Mohammadi A and Asif A. Distributed particle filter implementation with intermittent/irregular consensus convergence[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2572–2587. DOI: 10.1109/TSP.2013.2245123
    [24]
    Zhao Tong and Nehorai A. Distributed sequential Bayesian estimation of a diffusive source in wireless sensor networks[J]. IEEE Transactions on Signal Processing, 2007, 55(4): 1511–1524. DOI: 10.1109/TSP.2006.889975
    [25]
    Üney M, Clark D E, and Julier S J. Distributed fusion of PHD filters via exponential mixture densities[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 521–531. DOI: 10.1109/JSTSP.2013.2257162
    [26]
    Guo Yun-fei, Zeng Ze-bing, and Zhao Shang-yu. An amplitude association dynamic programming TBD algorithm with multistatic radar[C]. Proceedings of the 2016 35th Chinese Control Conference, Chengdu, China, 2016: 5076–5079.
    [27]
    Talebi H and Hemmatyar A. Asynchronous track-to-track fusion by direct estimation of time of sample in sensor networks[J]. IEEE Sensors Journal, 2014, 14(1): 210–217. DOI: 10.1109/JSEN.2013.2281394
    [28]
    Hu Yanyan, Duan Zhansheng, and Zhou Donghua. Estimation fusion with general asynchronous multi-rate sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2090–2102. DOI: 10.1109/TAES.2010.5595618
    [29]
    Yan L P, Liu B S, and Zhou D H. Asynchronous multirate multisensor information fusion algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1135–1146. DOI: 10.1109/TAES.2007.4383603
    [30]
    Wang Yi-min and Li X R. Distributed estimation fusion with unavailable cross-correlation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 259–278. DOI: 10.1109/TAES.2012.6129634
    [31]
    Julier S J. An empirical study into the use of chernoff information for robust, distributed fusion of Gaussian mixture models[C]. Proceedings of the 2006 9th IEEE International Conference on Information Fusion, Florence, Italy, 2006: 1–8.
    [32]
    Aprile A, Grossi E, Lops M, et al.. An application of Track-Before-Detect to sea-clutter rejection: Experimental results based on real data[C]. Proceedings of the 2014 11th European Radar Conference, Rome, Italy, 2014: 505–508.
    [33]
    Li Yang-yang, Wang Jing-he, Yi Wei, et al.. A centralized asynchronous fusion algorithm for sensors with different resolution via DP-TBD[C]. Proceedings of 2017 IEEE Radar Conference, Seattle, USA, 2017: 922–927.
  • Relative Articles

    [1]DING Chuanwei, LIU Zhilin, ZHANG Li, ZHAO Heng, ZHOU Qing, HONG Hong, ZHU Xiaohua. Tangential Human Posture Recognition with Sequential Images Based on MIMO Radar[J]. Journal of Radars, 2025, 14(1): 151-167. doi: 10.12000/JR24116
    [2]XIAO Jiong, TANG Bo, WANG Hai. Sparse Reconstruction-based Direction of Arrival Estimation for MIMO Radar in the Presence of Unknown Mutual Coupling[J]. Journal of Radars, 2024, 13(5): 1123-1133. doi: 10.12000/JR24061
    [3]LI Yachao, WANG Jiadong, ZHANG Tinghao, SONG Xuan. Present Situation and Prospect of Missile-borne Radar Imaging Technology[J]. Journal of Radars, 2022, 11(6): 943-973. doi: 10.12000/JR22119
    [4]HE Zishu, CHENG Ziyang, LI Jun, ZHANG Wei, SHI Jingxi, SU Yang, DENG Minglong. A Survey of Collocated MIMO Radar[J]. Journal of Radars, 2022, 11(5): 805-829. doi: 10.12000/JR22128
    [5]GUO Zhongyi, WANG Yunlai, WANG Yanzhe, GUO Kai. Research Advances in Vortex Radar Imaging Technology[J]. Journal of Radars, 2021, 10(5): 665-679. doi: 10.12000/JR21075
    [6]ZHANG Guoxin, YI Wei, KONG Lingjiang. Direct Position Determination for Massive MIMO System with One-bit Quantization[J]. Journal of Radars, 2021, 10(6): 970-981. doi: 10.12000/JR21062
    [7]DING Jinshan. Focusing Algorithms and Moving Target Detection Based on Video SAR[J]. Journal of Radars, 2020, 9(2): 321-334. doi: 10.12000/JR20018
    [8]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [9]YANG Jianyu. Multi-directional Evolution Trend and Law Analysis of Radar Ground Imaging Technology(in English)[J]. Journal of Radars, 2019, 8(6): 669-692. doi: 10.12000/JR19099
    [10]Xu Jingwei, Zhu Shengqi, Liao Guisheng, Zhang Yuhong. An Overview of Frequency Diverse Array Radar Technology[J]. Journal of Radars, 2018, 7(2): 167-182. doi: 10.12000/JR18023
    [11]Zhang Qun, Hu Jian, Luo Ying, Chen Yijun. Research Progresses in Radar Feature Extraction, Imaging, and Recognition of Target with Micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547. doi: 10.12000/JR18049
    [12]Gong Pengcheng, Liu Gang, Huang He, Wang Wenqin. Multidimensional Parameter Estimation Method Based on Sparse Iteration in FDA-MIMO Radar[J]. Journal of Radars, 2018, 7(2): 194-201. doi: 10.12000/JR16121
    [13]Luo Ying, Gong Yishuai, Chen Yijun, Zhang Qun. Multi-target Micro-motion Feature Extraction Based on Tracking Pulses in MIMO Radar[J]. Journal of Radars, 2018, 7(5): 575-584. doi: 10.12000/JR18035
    [14]Zhang Keshu, Pan Jie, Wang Ran, Li Guangzuo, Wang Ning, Wu Yirong. Study of Wide Swath Synthetic Aperture Ladar Imaging Techology[J]. Journal of Radars, 2017, 6(1): 1-10. doi: 10.12000/JR16152
    [15]Liang Hao, Cui Chen, Yu Jian. Two-dimensional DOA Estimation with High Accuracy for MIMO Radar Using Cross Array[J]. Journal of Radars, 2016, 5(3): 254-264. doi: 10.12000/JR16016
    [16]Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125
    [17]Tan Yun-hua, Wang Li-bo, Li Lian-lin. A Novel Probability Model for Suppressing Multipath Ghosts in GPR and TWI Imaging: A Numerical Study(in English)[J]. Journal of Radars, 2015, 4(5): 509-517. doi: 10.12000/JR15066
    [18]Wang Ting, Zhao Yong-jun, Hu Tao. Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar[J]. Journal of Radars, 2015, 4(2): 136-148. doi: 10.12000/JR14091
    [19]Wu Yi-rong. Concept on Multidimensional Space Joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135-142. doi: 10.3724/SP.J.1300.2013.13047
    [20]Mao Yong-fei, Wang Xiao-jie, Xiang Mao-sheng. Joint Three-dimensional Location Algorithm for Airborne Interferometric SAR System[J]. Journal of Radars, 2013, 2(1): 60-67. doi: 10.3724/SP.J.1300.2012.20107
  • Cited by

    Periodical cited type(2)

    1. 纪正江,程琳豪,郑锡涛,闫雷雷. 基于碳纤维的层合结构双极化电磁吸波及其弯曲性能设计. 应用数学和力学. 2024(08): 1096-1105 .
    2. 曹文博,麻晢乂培,黄小忠,姜超. 基于单层频率选择表面的轻质宽频吸波体设计. 电子元件与材料. 2022(02): 180-185 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.5 %FULLTEXT: 26.5 %META: 67.9 %META: 67.9 %PDF: 5.7 %PDF: 5.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.6 %其他: 10.6 %其他: 0.6 %其他: 0.6 %Canton: 0.1 %Canton: 0.1 %Cassino: 0.1 %Cassino: 0.1 %China: 0.9 %China: 0.9 %Finland: 0.1 %Finland: 0.1 %India: 0.0 %India: 0.0 %Netherlands: 0.2 %Netherlands: 0.2 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Ukraine: 0.1 %Ukraine: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.4 %[]: 0.4 %上海: 1.3 %上海: 1.3 %东莞: 0.1 %东莞: 0.1 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.0 %临沂: 0.0 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %乌克兰哈尔科夫: 0.0 %乌克兰哈尔科夫: 0.0 %九江: 0.2 %九江: 0.2 %云浮: 0.1 %云浮: 0.1 %亚历山德里亚: 0.1 %亚历山德里亚: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %伊春: 0.0 %伊春: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.1 %保定: 0.1 %兰辛: 0.1 %兰辛: 0.1 %内蒙古自治区呼和浩特: 0.0 %内蒙古自治区呼和浩特: 0.0 %包头: 0.1 %包头: 0.1 %北京: 11.0 %北京: 11.0 %华盛顿: 0.1 %华盛顿: 0.1 %南京: 0.4 %南京: 0.4 %南宁: 0.0 %南宁: 0.0 %南通: 0.1 %南通: 0.1 %厦门: 0.1 %厦门: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %合肥: 0.2 %合肥: 0.2 %吉安: 0.0 %吉安: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %安康: 0.1 %安康: 0.1 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.1 %宣城: 0.1 %巴中: 0.0 %巴中: 0.0 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.4 %广州: 0.4 %延安: 0.0 %延安: 0.0 %张家口: 3.0 %张家口: 3.0 %张家口市: 0.1 %张家口市: 0.1 %徐州: 0.1 %徐州: 0.1 %惠州: 0.1 %惠州: 0.1 %意大利: 0.1 %意大利: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.3 %扬州: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 0.1 %昆明: 0.1 %昌吉: 0.0 %昌吉: 0.0 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.4 %杭州: 1.4 %枣庄: 0.0 %枣庄: 0.0 %柏林: 0.1 %柏林: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %梅州: 0.0 %梅州: 0.0 %楚雄: 0.0 %楚雄: 0.0 %榆林: 0.1 %榆林: 0.1 %武汉: 0.2 %武汉: 0.2 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.1 %沈阳: 0.1 %泰州: 0.0 %泰州: 0.0 %泸州: 0.0 %泸州: 0.0 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.3 %济南: 0.3 %海口: 0.0 %海口: 0.0 %淮南: 0.0 %淮南: 0.0 %深圳: 0.5 %深圳: 0.5 %温州: 0.3 %温州: 0.3 %渭南: 0.2 %渭南: 0.2 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.4 %漯河: 0.4 %漳州: 0.0 %漳州: 0.0 %潮州: 0.1 %潮州: 0.1 %濮阳: 0.1 %濮阳: 0.1 %烟台: 0.1 %烟台: 0.1 %焦作: 0.0 %焦作: 0.0 %牡丹江: 0.1 %牡丹江: 0.1 %益阳: 0.1 %益阳: 0.1 %盘锦: 0.1 %盘锦: 0.1 %石家庄: 0.4 %石家庄: 0.4 %石家庄市: 0.1 %石家庄市: 0.1 %福州: 0.1 %福州: 0.1 %绍兴: 0.0 %绍兴: 0.0 %芒廷维尤: 18.2 %芒廷维尤: 18.2 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.1 %苏州: 0.1 %莆田: 0.0 %莆田: 0.0 %莫斯科: 0.1 %莫斯科: 0.1 %菏泽: 0.0 %菏泽: 0.0 %衡水: 0.1 %衡水: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 36.9 %西宁: 36.9 %西安: 1.4 %西安: 1.4 %赣州: 0.0 %赣州: 0.0 %运城: 0.3 %运城: 0.3 %通辽: 0.0 %通辽: 0.0 %郑州: 3.0 %郑州: 3.0 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.0 %重庆: 0.0 %金华: 0.0 %金华: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.4 %长沙: 0.4 %长治: 0.0 %长治: 0.0 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.1 %青岛: 0.1 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.0 %马鞍山: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %其他其他CantonCassinoChinaFinlandIndiaNetherlandsTaiwan, ChinaUkraineUnited States[]上海东莞中卫临汾临沂丹东丽水乌克兰哈尔科夫九江云浮亚历山德里亚伊利诺伊州伊春佛山保定兰辛内蒙古自治区呼和浩特包头北京华盛顿南京南宁南通厦门台北台州合肥吉安呼和浩特哈尔滨唐山嘉兴大连天津安康宝鸡宣城巴中巴彦淖尔常州广州延安张家口张家口市徐州惠州意大利成都扬州无锡昆明昌吉晋城朝阳杭州枣庄柏林格兰特县梅州楚雄榆林武汉汕头沈阳泰州泸州洛杉矶洛阳济南海口淮南深圳温州渭南湘潭漯河漳州潮州濮阳烟台焦作牡丹江益阳盘锦石家庄石家庄市福州绍兴芒廷维尤芜湖芝加哥苏州莆田莫斯科菏泽衡水衢州西宁西安赣州运城通辽郑州鄂州重庆金华镇江长春长沙长治阳泉青岛香港香港特别行政区马鞍山齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3032) PDF downloads(377) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint