Volume 11 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
HE Zishu, CHENG Ziyang, LI Jun, et al. A survey of collocated MIMO radar[J]. Journal of Radars, 2022, 11(5): 805–829. doi: 10.12000/JR22128
Citation: HE Zishu, CHENG Ziyang, LI Jun, et al. A survey of collocated MIMO radar[J]. Journal of Radars, 2022, 11(5): 805–829. doi: 10.12000/JR22128

A Survey of Collocated MIMO Radar

DOI: 10.12000/JR22128
Funds:  The National Natural Science Foundation of China (62001084, 62031007)
More Information
  • Corresponding author: CHENG Ziyang, zycheng@uestc.edu.cn
  • Received Date: 2022-06-29
  • Accepted Date: 2022-07-27
  • Rev Recd Date: 2022-07-27
  • Available Online: 2022-07-29
  • Publish Date: 2022-08-18
  • As a novel radar system, the Multiple-Input Multiple-Output (MIMO) radar with waveform diversity has demonstrated excellent performance in several aspects, including target detection, parameter estimation, radio frequency stealth, and anti-jamming characteristics. After nearly 20 years of in-depth research by scholars, the MIMO radar theory based on orthogonal waveforms has significantly improved. It has been widely applied in fields such as automobile-assisted driving and safety defense. In recent years, with the introduction of the concepts of electromagnetic environment perception and knowledge aid, and the application requirements of radar-active anti-jamming, radio frequency stealth, and detection-communication integration, multiple new theories and methods have been generated for the MIMO radar in system architecture, transmit waveform design, and signal processing. This paper aims to review and summarize the research works on MIMO radar published in the past 20 years, including: the principle of the orthogonal-waveform MIMO radar, its target detection performance analysis and typical applications; waveform design and characteristics of the orthogonal-waveform MIMO radar; knowledge-aided cognitive MIMO waveform design and algorithm; MIMO detection-communication integrated waveform design and algorithm; MIMO radar parameter estimation; MIMO radar target detection; and MIMO radar resource management and scheduling. Finally, the paper discusses the clutter suppression and Space-Time Adaptive Processing (STAP) of MIMO radar in airborne applications, the signal processing of MIMO radar in imaging, and the signal processing of chirp millimeter-wave (mmWave) MIMO radar based on time division multi-waveform diversity.

     

  • loading
  • [1]
    何子述, 李军, 刘红明, 等. MIMO雷达[M]. 北京: 国防工业出版社, 2017.

    HE Zishu, LI Jun, LIU Hongming, et al. MIMO Radar[M]. Beijing: National Defense Industry Press, 2017.
    [2]
    RABIDEAU D J and PARKER P. Ubiquitous MIMO multifunction digital array radar[C]. The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, Pacific Grove, USA, 2003: 1057–1064.
    [3]
    LI Jian and STOICA P. MIMO radar diversity means superiority[C]. 14th Adaptive Sensor Array Processing, Mass, USA, 2006.
    [4]
    BLISS D W and FORSYTHE K W. Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution[C]. The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, USA, 2003: 54–59.
    [5]
    FISHLER E, HAIMOVICH A, BLUM R, et al. MIMO radar: An idea whose time has come[C]. 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 71–78.
    [6]
    FISHLER E, HAIMOVICH A, BLUM R, et al. Performance of MIMO radar systems: Advantages of angular diversity[C]. Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004, Pacific Grove, USA, 2004: 305–309.
    [7]
    何子述, 韩春林, 刘波. MIMO雷达概念及其技术特点分析[J]. 电子学报, 2005, 33(12A): 2441–2445.

    HE Zishu, HAN Chunlin, and LIU Bo. MIMO radar and its technical characteristic analyses[J]. Acta Electronica Sinica, 2005, 33(12A): 2441–2445.
    [8]
    张伟. 机载MIMO雷达空时信号处理研究[D]. [博士论文], 电子科技大学, 2013.

    ZHANG Wei. Analysis on airborne MIMO radar space time signal processing[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2013.
    [9]
    CHEN Chunyang and VAIDYANATHAN P P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 623–635. doi: 10.1109/TSP.2007.907917
    [10]
    MECCA V F, RAMAKRISHNAN D, and KROLIK J L. MIMO radar space-time adaptive processing for multipath clutter mitigation[C]. Fourth IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, USA, 2006: 249–253.
    [11]
    XU Jingwei, ZHU Shengqi, and LIAO Guisheng. Space-time-range adaptive processing for airborne radar systems[J]. IEEE Sensors Journal, 2015, 15(3): 1602–1610. doi: 10.1109/JSEN.2014.2364594
    [12]
    WEN Cai, PENG Jinye, ZHOU Yan, et al. Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario[J]. IEEE Sensors Journal, 2018, 18(10): 4154–4166. doi: 10.1109/JSEN.2018.2820905
    [13]
    WANG Keyi, LIAO Guisheng, XU Jingwei, et al. Clutter rank analysis in airborne FDA-MIMO radar with range ambiguity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1416–1430. doi: 10.1109/TAES.2021.3122822
    [14]
    SHI Junnan, JIU Bo, LIU Hongwei, et al. Transmit design for airborne MIMO radar based on prior information[J]. Signal Processing, 2016, 128: 521–530. doi: 10.1016/j.sigpro.2016.05.003
    [15]
    ZHOU Qingsong, LI Zhihui, SHI Junpeng, et al. Robust cognitive transmit waveform and receive filter design for airborne MIMO radar in signal-dependent clutter environment[J]. Digital Signal Processing, 2020, 101: 102709. doi: 10.1016/j.dsp.2020.102709
    [16]
    SHI Shengnan, HE Zishu, and WANG Zhaoyi. Joint design of transmitting waveforms and receiving filter for MIMO-STAP airborne radar[J]. Circuits, Systems, and Signal Processing, 2020, 39(3): 1489–1508. doi: 10.1007/s00034-019-01215-w
    [17]
    ABRAMOVICH Y I, FRAZER G J, and JOHNSON B A. Principles of mode-selective MIMO OTHR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1839–1868. doi: 10.1109/TAES.2013.6558024
    [18]
    HE Qian, LI Xiaodong, HE Zishu, et al. MIMO-OTH radar: Signal model for arbitrary placement and signals with non-point targets[J]. IEEE Transactions on Signal Processing, 2015, 63(7): 1846–1857. doi: 10.1109/TSP.2015.2403275
    [19]
    HU Jianbin, LI Mao, HE Qian, et al. Joint estimation of MIMO-OTH radar measurements and ionospheric parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2789–2805. doi: 10.1109/TAES.2017.2714961
    [20]
    WANG Yufei, ZHANG Linxi, and SONG Zuxun. Angle estimation of weak scatterers using improved MUSIC for bistatic MIMO radar[J]. IEEE Signal Processing Letters, 2020, 27: 2164–2167. doi: 10.1109/LSP.2020.3039935
    [21]
    JIANG Hong, ZHANG Jiankang, and WONG K M. Joint DOD and DOA estimation for bistatic MIMO radar in unknown correlated noise[J]. IEEE Transactions on Vehicular Technology, 2015, 64(11): 5113–5125. doi: 10.1109/TVT.2014.2384495
    [22]
    LI Jianfeng, ZHANG Xiaofei, CAO Renzheng, et al. Reduced-dimension MUSIC for angle and array gain-phase error estimation in bistatic MIMO radar[J]. IEEE Communications Letters, 2013, 17(3): 443–446. doi: 10.1109/LCOMM.2013.012313.122113
    [23]
    刘红明. 双基地MIMO雷达原理与理论研究[D]. [博士论文], 电子科技大学, 2010.

    LIU Hongming. Analysis on basic principles and theory of bistatic MIMO radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2010.
    [24]
    LIU Hongwei, WANG Xu, JIU Bo, et al. Wideband MIMO radar waveform design for multiple target imaging[J]. IEEE Sensors Journal, 2016, 16(23): 8545–8556. doi: 10.1109/JSEN.2016.2604844
    [25]
    BLEH D, RÖSCH M, KURI M, et al. W-band time-domain multiplexing FMCW MIMO radar for far-field 3-D imaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3474–3484. doi: 10.1109/TMTT.2017.2661742
    [26]
    JEON S Y, KIM S, KIM J, et al. W-band FMCW MIMO radar system for high-resolution multimode imaging with time-and frequency-division multiplexing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 5042–5057. doi: 10.1109/TGRS.2020.2971998
    [27]
    GANIS A, NAVARRO E M, SCHOENLINNER B, et al. A portable 3-D imaging FMCW MIMO radar demonstrator with a 24 × 24 antenna array for medium-range applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 298–312. doi: 10.1109/TGRS.2017.2746739
    [28]
    ENGELS F, HEIDENREICH P, ZOUBIR A M, et al. Advances in automotive radar: A framework on computationally efficient high-resolution frequency estimation[J]. IEEE Signal Processing Magazine, 2017, 34(2): 36–46. doi: 10.1109/MSP.2016.2637700
    [29]
    KRONAUGE M and ROHLING H. New chirp sequence radar waveform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2870–2877. doi: 10.1109/TAES.2014.120813
    [30]
    ZHANG Wei, LI Huiyong, SUN Guohao, et al. Enhanced detection of Doppler-spread targets for FMCW radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 2066–2078. doi: 10.1109/TAES.2019.2925433
    [31]
    DENG Hai. Polyphase code design for orthogonal netted radar systems[J]. IEEE Transactions on Signal Processing, 2004, 52(11): 3126–3135. doi: 10.1109/TSP.2004.836530
    [32]
    LIU Bo, HE Zishu, ZENG Jiankui, et al. Polyphase orthogonal code design for MIMO radar systems[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4.
    [33]
    胡亮兵, 刘宏伟, 吴顺君. 基于约束非线性规划的MIMO雷达正交波形设计[J]. 系统工程与电子技术, 2011, 33(1): 64–68. doi: 10.3969/j.issn.1001-506X.2011.01.13

    HU Liangbing, LIU Hongwei, and WU Shunjun. Orthogonal waveform design for MIMO radar via constrained nonlinear programming[J]. Systems Engineering and Electronics, 2011, 33(1): 64–68. doi: 10.3969/j.issn.1001-506X.2011.01.13
    [34]
    吕红芬, 宋万杰, 张子敬, 等. 基于遗传算法和贪心算法正交多相码设计[J]. 雷达科学与技术, 2010, 8(6): 543–548, 558. doi: 10.3969/j.issn.1672-2337.2010.06.011

    LV Hongfen, SONG Wanjie, ZHANG Zijing, et al. Design of orthogonal polyphase code based on genetic algorithm and greedy algorithm[J]. Radar Science and Technology, 2010, 8(6): 543–548, 558. doi: 10.3969/j.issn.1672-2337.2010.06.011
    [35]
    DENG Hai. Discrete frequency-coding waveform design for netted radar systems[J]. IEEE Signal Processing Letters, 2004, 11(2): 179–182. doi: 10.1109/LSP.2003.821693
    [36]
    LIU Bo. Orthogonal discrete frequency-coding waveform set design with minimized autocorrelation sidelobes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4): 1650–1657. doi: 10.1109/TAES.2009.5310326
    [37]
    STOICA P, LI Jian, and XIE Yao. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151–4161. doi: 10.1109/TSP.2007.894398
    [38]
    CHENG Ziyang, HE Zishu, ZHANG Shengmiao, et al. Constant modulus waveform design for MIMO radar transmit beampattern[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4912–4923. doi: 10.1109/TSP.2017.2718976
    [39]
    LIPOR J, AHMED S, and ALOUINI M S. Fourier-based transmit beampattern design using MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2226–2235. doi: 10.1109/TSP.2014.2307838
    [40]
    AUBRY A, DE MAIO A, and HUANG Yongwei. MIMO radar beampattern design via PSL/ISL optimization[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 3955–3967. doi: 10.1109/TSP.2016.2543207
    [41]
    AHMED S, THOMPSON J S, PETILLOT Y R, et al. Finite alphabet constant-envelope waveform design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2011, 59(11): 5326–5337. doi: 10.1109/TSP.2011.2163067
    [42]
    WANG Yongchao, WANG Xu, LIU Hongwei, et al. On the design of constant modulus probing signals for MIMO radar[J]. IEEE Transactions on Signal Processing, 2012, 60(8): 4432–4438. doi: 10.1109/TSP.2012.2197615
    [43]
    ZHANG Xiaojun, HE Zishu, RAYMAN-BACCHUS L, et al. MIMO radar transmit beampattern matching design[J]. IEEE Transactions on Signal Processing, 2015, 63(8): 2049–2056. doi: 10.1109/TSP.2015.2398841
    [44]
    XU Haisheng, BLUM R S, WANG Jian, et al. Colocated MIMO radar waveform design for transmit beampattern formation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1558–1568. doi: 10.1109/TAES.2014.140249
    [45]
    CHENG Ziyang, HAN Chunlin, LIAO Bin, et al. Communication-aware waveform design for MIMO radar with good transmit beampattern[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5549–5562. doi: 10.1109/TSP.2018.2868042
    [46]
    CHENG Ziyang, LIAO Bin, HE Zishu, et al. Joint design of the transmit and receive beamforming in MIMO radar systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7919–7930. doi: 10.1109/TVT.2019.2927045
    [47]
    DENG Minglong, CHENG Ziyang, LU Xiaoying, et al. Binary waveform design for MIMO radar with good transmit beampattern performance[J]. Electronics Letters, 2019, 55(19): 1061–1063. doi: 10.1049/el.2019.1602
    [48]
    AUBRY A, DEMAIO A, FARINA A, et al. Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 93–117. doi: 10.1109/TAES.2013.6404093
    [49]
    KARBASI S M, AUBRY A, DE MAIO A, et al. Robust transmit code and receive filter design for extended targets in clutter[J]. IEEE Transactions on Signal Processing, 2015, 63(8): 1965–1976. doi: 10.1109/TSP.2015.2404301
    [50]
    CUI Guolong, LI Hongbin, and RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 343–353. doi: 10.1109/TSP.2013.2288086
    [51]
    ALDAYEL O, MONGA V, and RANGASWAMY M. Successive QCQP refinement for MIMO radar waveform design under practical constraints[J]. IEEE Transactions on Signal Processing, 2016, 64(14): 3760–3774. doi: 10.1109/TSP.2016.2552501
    [52]
    CUI Guolong, YU Xianxiang, CAROTENUTO V, et al. Space-time transmit code and receive filter design for colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2017, 65(5): 1116–1129. doi: 10.1109/TSP.2016.2633242
    [53]
    CHENG Ziyang, HE Zishu, LIAO Bin, et al. MIMO radar waveform design with PAPR and similarity constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 968–981. doi: 10.1109/TSP.2017.2780052
    [54]
    GROSSI E and LOPS M. Space-time code design for MIMO detection based on Kullback-Leibler divergence[J]. IEEE Transactions on Information Theory, 2012, 58(6): 3989–4004. doi: 10.1109/TIT.2012.2189754
    [55]
    SONG Xiufeng, WILLETT P, ZHOU Shengli, et al. The MIMO radar and jammer games[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 687–699. doi: 10.1109/TSP.2011.2169251
    [56]
    TANG Bo, TANG Jun, and PENG Yingning. MIMO radar waveform design in colored noise based on information theory[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4684–4697. doi: 10.1109/TSP.2010.2050885
    [57]
    TANG Bo, ZHANG Yu, and TANG Jun. An efficient minorization maximization approach for MIMO radar waveform optimization via relative entropy[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 400–411. doi: 10.1109/TSP.2017.2771726
    [58]
    LI Jian, XU Luzhou, STOICA P, et al. Range compression and waveform optimization for MIMO radar: A Cramér-Rao bound based study[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 218–232. doi: 10.1109/TSP.2007.901653
    [59]
    CHENG Ziyang, LIAO Bin, SHI Shengnan, et al. Co-design for overlaid MIMO radar and downlink MISO communication systems via Cramér-Rao bound minimization[J]. IEEE Transactions on Signal Processing, 2019, 67(24): 6227–6240. doi: 10.1109/TSP.2019.2952048
    [60]
    YANG Yang and BLUM R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 330–343. doi: 10.1109/TAES.2007.357137
    [61]
    HERBERT S, HOPGOOD J R, and MULGREW B. MMSE adaptive waveform design for active sensing with applications to MIMO radar[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1361–1373. doi: 10.1109/TSP.2017.2786277
    [62]
    STOICA P, HE Hao, and LI Jian. Optimization of the receive filter and transmit sequence for active sensing[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1730–1740. doi: 10.1109/TSP.2011.2179652
    [63]
    STOICA P, HE Hao, and LI Jian. New algorithms for designing unimodular sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1415–1425. doi: 10.1109/TSP.2009.2012562
    [64]
    HE Hao, STOICA P, and LI Jian. Designing unimodular sequence sets with good correlations—including an application to MIMO radar[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4391–4405. doi: 10.1109/TSP.2009.2025108
    [65]
    SONG Junxiao, BABU P, and PALOMAR D P. Sequence set design with good correlation properties via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2866–2879. doi: 10.1109/TSP.2016.2535312
    [66]
    LIANG Junli, SO H C, LI Jian, et al. Unimodular sequence design based on alternating direction method of multipliers[J]. IEEE Transactions on Signal Processing, 2016, 64(20): 5367–5381. doi: 10.1109/TSP.2016.2597123
    [67]
    ZHAO Licheng, SONG Junxiao, BABU P, et al. A unified framework for low autocorrelation sequence design via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2017, 65(2): 438–453. doi: 10.1109/TSP.2016.2620113
    [68]
    LI Yongzhe and VOROBYOV S A. Fast algorithms for designing unimodular waveform(s) with good correlation properties[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1197–1212. doi: 10.1109/TSP.2017.2787104
    [69]
    CHEN Chunyang. Signal processing algorithms for MIMO radar[D]. [Ph. D. dissertation], California Institute of Technology, 2009.
    [70]
    CHEN Yifan, NIJSURE Y, YUEN C, et al. Adaptive distributed MIMO radar waveform optimization based on mutual information[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1374–1385. doi: 10.1109/TAES.2013.6494422
    [71]
    ABSIL P A, MAHONY R, and SEPULCHRE R. Optimization Algorithms on Matrix Manifolds[M]. Princeton: Princeton University Press, 2009.
    [72]
    LI Jie, LIAO Guisheng, HUANG Yan, et al. Riemannian geometric optimization methods for joint design of transmit sequence and receive filter on MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 5602–5616. doi: 10.1109/TSP.2020.3022821
    [73]
    SEN S. PAPR-constrained Pareto-optimal waveform design for OFDM-STAP radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3658–3669. doi: 10.1109/TGRS.2013.2274593
    [74]
    DE MAIO A, DE NICOLA S, HUANG Yongwei, et al. Code design to optimize radar detection performance under accuracy and similarity constraints[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5618–5629. doi: 10.1109/TSP.2008.929657
    [75]
    YU Xianxiang, CUI Guolong, KONG Lingjiang, et al. Constrained waveform design for colocated MIMO radar with uncertain steering matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 356–370. doi: 10.1109/TAES.2018.2852200
    [76]
    DE MAIO A, DE NICOLA S, HUANG Yongwei, et al. Design of phase codes for radar performance optimization with a similarity constraint[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 610–621. doi: 10.1109/TSP.2008.2008247
    [77]
    GRIFFITHS H, COHEN L, WATTS S, et al. Radar spectrum engineering and management: Technical and regulatory issues[J]. Proceedings of the IEEE, 2015, 103(1): 85–102. doi: 10.1109/JPROC.2014.2365517
    [78]
    NUNN C and MOYER L R. Spectrally-compliant waveforms for wideband radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(8): 11–15. doi: 10.1109/MAES.2012.6329156
    [79]
    AUBRY A, DE MAIO A, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1138–1152. doi: 10.1109/TAES.2014.120731
    [80]
    AUBRY A, CAROTENUTO V, and DE MAIO A. Forcing multiple spectral compatibility constraints in radar waveforms[J]. IEEE Signal Processing Letters, 2016, 23(4): 483–487. doi: 10.1109/LSP.2016.2532739
    [81]
    CHENG Ziyang, LIAO Bin, HE Zishu, et al. Spectrally compatible waveform design for MIMO radar in the presence of multiple targets[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3543–3555. doi: 10.1109/TSP.2018.2833818
    [82]
    LUO Z Q and TSENG P. On the convergence of the coordinate descent method for convex differentiable minimization[J]. Journal of Optimization Theory and Applications, 1992, 72(1): 7–35. doi: 10.1007/BF00939948
    [83]
    HONG Mingyi, RAZAVIYAYN M, LUO Zhiquan, et al. A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing[J]. IEEE Signal Processing Magazine, 2016, 33(1): 57–77. doi: 10.1109/MSP.2015.2481563
    [84]
    SUN Ying, BABU P, and PALOMAR D P. Majorization-minimization algorithms in signal processing, communications, and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 794–816. doi: 10.1109/TSP.2016.2601299
    [85]
    DENG Minglong, CHENG Ziyang, WU Linlong, et al. One-Bit ADCs/DACs based MIMO radar: Performance analysis and joint design[J]. IEEE Transactions on Signal Processing, 2022, 70: 2609–2624. doi: 10.1109/TSP.2022.3176953
    [86]
    BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    [87]
    刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113
    [88]
    LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632
    [89]
    LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976
    [90]
    KUMARI P, CHOI J, GONZÁLEZ-PRELCIC N, et al. IEEE 802.11 ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762
    [91]
    KUMARI P, VOROBYOV S A, and HEATH R W. Adaptive virtual waveform design for millimeter-wave joint communication-radar[J]. IEEE Transactions on Signal Processing, 2019, 68: 715–730. doi: 10.1109/TSP.2019.2956689
    [92]
    RESTUCCIA F. IEEE 802.11 bf: Toward ubiquitous Wi-Fi sensing[EB/OL]. https://arxiv.org/abs/2103.14918, 2021.
    [93]
    LI Xiang, ZHANG Daqing, LV Qin, et al. IndoTrack: Device-free indoor human tracking with commodity Wi-Fi[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3): 72. doi: 10.1145/3130940
    [94]
    BEKAR M, BAKER C J, HOARE E G, et al. Joint MIMO radar and communication system using a PSK-LFM waveform with TDM and CDM approaches[J]. IEEE Sensors Journal, 2021, 21(5): 6115–6124. doi: 10.1109/JSEN.2020.3043085
    [95]
    WU Kai, ZHANG J A, HUANG Xiaojing, et al. Integrating secure communications into frequency hopping MIMO radar with improved data rate[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 5392–5405. doi: 10.1109/TWC.2021.3140022
    [96]
    DOKHANCHI S H, MYSORE B S, MISHRA K V, et al. A mmWave automotive joint radar-communications system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1241–1260. doi: 10.1109/TAES.2019.2899797
    [97]
    LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739
    [98]
    LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648
    [99]
    CHENG Ziyang and LIAO Bin. QoS-aware hybrid beamforming and DOA estimation in multi-carrier dual-function radar-communication systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1890–1905. doi: 10.1109/JSAC.2022.3155529
    [100]
    LI Jian, STOICA P, XU Luzhou, et al. On parameter identifiability of MIMO radar[J]. IEEE Signal Processing Letters, 2007, 14(12): 968–971. doi: 10.1109/LSP.2007.905051
    [101]
    LEHMANN N H, FISHLER E, HAIMOVICH A M, et al. Evaluation of transmit diversity in MIMO-radar direction finding[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 2215–2225. doi: 10.1109/TSP.2007.893220
    [102]
    CHEN Duofang, CHEN Baixiao, and QIN Guodong. Angle estimation using ESPRIT in MIMO radar[J]. Electronics Letters, 2008, 44(12): 770–771. doi: 10.1049/el:20080276
    [103]
    CHEN Jinli, GU Hong, and SU Weimin. Angle estimation using ESPRIT without pairing in MIMO radar[J]. Electronics Letters, 2008, 44(24): 1422–1423. doi: 10.1049/el:20089089
    [104]
    CHAN F K W, SO H C, HUANG Lei, et al. Parameter estimation and identifiability in bistatic multiple-input multiple-output radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2047–2056. doi: 10.1109/TAES.2015.130502
    [105]
    ZHANG Xiaofei, XU Lingyun, XU Lei, et al. Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC[J]. IEEE Communications Letters, 2010, 14(12): 1161–1163. doi: 10.1109/LCOMM.2010.102610.101581
    [106]
    NION D and SIDIROPOULOS N D. Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar[J]. IEEE Transactions on Signal Processing, 2010, 58(11): 5693–5705. doi: 10.1109/TSP.2010.2058802
    [107]
    THAKRE A, HAARDT M, ROEMER F, et al. Tensor-based spatial smoothing (TB-SS) using multiple snapshots[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2715–2728. doi: 10.1109/TSP.2010.2043141
    [108]
    RAO Wei, LI Dan, and ZHANG Jianqiu. A tensor-based approach to L-shaped arrays processing with enhanced degrees of freedom[J]. IEEE Signal Processing Letters, 2018, 25(2): 1–5. doi: 10.1109/LSP.2017.2783370
    [109]
    HAN Keyong and NEHORAI A. Nested vector-sensor array processing via tensor modeling[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2542–2553. doi: 10.1109/TSP.2014.2314437
    [110]
    YAO Bobin, WANG Wenjie, and YIN Qinye. DOD and DOA estimation in bistatic non-uniform multiple-input multiple-output radar systems[J]. IEEE Communications Letters, 2012, 16(11): 1796–1799. doi: 10.1109/LCOMM.2012.091212.121605
    [111]
    SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Generalized co-prime MIMO radar for DOA estimation with enhanced degrees of freedom[J]. IEEE Sensors Journal, 2018, 18(3): 1203–1212. doi: 10.1109/JSEN.2017.2782746
    [112]
    HUANG Yan, LIAO Guisheng, LI Jun, et al. Sum and difference coarray based MIMO radar array optimization with its application for DOA estimation[J]. Multidimensional Systems and Signal Processing, 2017, 28(4): 1183–1202. doi: 10.1007/s11045-016-0387-2
    [113]
    ZHENG Wang, ZHANG Xiaofei, and SHI Junpeng. Sparse extension array geometry for DOA estimation with nested MIMO radar[J]. IEEE Access, 2017, 5: 9580–9586. doi: 10.1109/ACCESS.2017.2710212
    [114]
    YANG Minglei, SUN Lei, YUAN Xin, et al. A new nested MIMO array with increased degrees of freedom and hole-free difference coarray[J]. IEEE Signal Processing Letters, 2018, 25(1): 40–44. doi: 10.1109/LSP.2017.2766294
    [115]
    SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Sparsity-based DOA estimation of coherent and uncorrelated targets with flexible MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5835–5848. doi: 10.1109/TVT.2019.2913437
    [116]
    SHI Junpeng, WEN Fangqing, and LIU Tianpeng. Nested MIMO radar: Coarrays, tensor modeling, and angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 573–585. doi: 10.1109/TAES.2020.3034012
    [117]
    WANG Xianpeng, HUANG Mengxing, and WAN Liangtian. Joint 2D-DOD and 2D-DOA estimation for coprime EMVS-MIMO radar[J]. Circuits, Systems, and Signal Processing, 2021, 40(6): 2950–2966. doi: 10.1007/s00034-020-01605-5
    [118]
    ZHENG Guimei. DOA estimation in MIMO radar with non-perfectly orthogonal waveforms[J]. IEEE Communications Letters, 2017, 21(2): 414–417. doi: 10.1109/LCOMM.2016.2622691
    [119]
    LIAO Bin. Fast angle estimation for MIMO radar with nonorthogonal waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 2091–2096. doi: 10.1109/TAES.2018.2847958
    [120]
    WEN Fangqing. Computationally efficient DOA estimation algorithm for MIMO radar with imperfect waveforms[J]. IEEE Communications Letters, 2019, 23(6): 1037–1040. doi: 10.1109/LCOMM.2019.2911285
    [121]
    CHEN Peng, CAO Zhenxin, CHEN Zhimin, et al. Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 208–220. doi: 10.1109/TSP.2018.2881663
    [122]
    LIU Tingting, WEN Fangqing, ZHANG Lei, et al. Off-grid DOA estimation for colocated MIMO radar via reduced-complexity sparse Bayesian learning[J]. IEEE Access, 2019, 7: 99907–99916. doi: 10.1109/ACCESS.2019.2930531
    [123]
    CONG Jingyu, WANG Xianpeng, HUANG Mengxing, et al. Robust DOA estimation method for MIMO radar via deep neural networks[J]. IEEE Sensors Journal, 2021, 21(6): 7498–7507. doi: 10.1109/JSEN.2020.3046291
    [124]
    MA Yugang, ZENG Yonghong, and SUN Sumei. A deep learning based super resolution DoA estimator with single snapshot MIMO radar data[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4142–4155. doi: 10.1109/TVT.2022.3151674
    [125]
    BEKKERMAN I and TABRIKIAN J. Target detection and localization using MIMO radars and sonars[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3873–3883. doi: 10.1109/TSP.2006.879267
    [126]
    XU Luzhou, LI Jian, and STOICA P. Target detection and parameter estimation for MIMO radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 927–939. doi: 10.1109/TAES.2008.4655353
    [127]
    TANG Jun, LI Ning, WU Yong, et al. On detection performance of MIMO radar: A relative entropy-based study[J]. IEEE Signal Processing Letters, 2009, 16(3): 184–187. doi: 10.1109/LSP.2008.2011704
    [128]
    CUI Guolong, KONG Lingjiang, and YANG Xiaobo. Performance analysis of colocated MIMO radars with randomly distributed arrays in compound-Gaussian clutter[J]. Circuits, Systems, and Signal Processing, 2012, 31(4): 1407–1422. doi: 10.1007/s00034-011-9381-y
    [129]
    LIU Weijian, WANG Yongliang, LIU Jun, et al. Adaptive detection without training data in colocated MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2469–2479. doi: 10.1109/TAES.2015.130754
    [130]
    LIU Jun, ZHOU Shenghua, LIU Weijian, et al. Tunable adaptive detection in colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 1080–1092. doi: 10.1109/TSP.2017.2778693
    [131]
    LIU Jun, HAN Jinwang, ZHANG Zijing, et al. Bayesian detection for MIMO radar in Gaussian clutter[J]. IEEE Transactions on Signal Processing, 2018, 66(24): 6549–6559. doi: 10.1109/TSP.2018.2879038
    [132]
    LIU Jun, HAN Jinwang, LIU Weijian, et al. Persymmetric Rao test for MIMO radar in Gaussian disturbance[J]. Signal Processing, 2019, 165: 30–36. doi: 10.1016/j.sigpro.2019.06.028
    [133]
    LIU Jun, HAN Jinwang, ZHANG Zijing, et al. Target detection exploiting covariance matrix structures in MIMO radar[J]. Signal Processing, 2019, 154: 174–181. doi: 10.1016/j.sigpro.2018.07.013
    [134]
    LIU Jun and LI Jian. Robust detection in MIMO radar with steering vector mismatches[J]. IEEE Transactions on Signal Processing, 2019, 67(20): 5270–5280. doi: 10.1109/TSP.2019.2939078
    [135]
    FORTUNATI S, SANGUINETTI L, GINI F, et al. Massive MIMO radar for target detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 859–871. doi: 10.1109/TSP.2020.2967181
    [136]
    AHMED A M, AHMAD A A, FORTUNATI S, et al. A reinforcement learning based approach for multitarget detection in massive MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2622–2636. doi: 10.1109/TAES.2021.3061809
    [137]
    LISI F, FORTUNATI S, GRECO M S, et al. Enhancement of a state-of-the-art RL-based detection algorithm for Massive MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022.
    [138]
    YAN Junkun, LIU Hongwei, JIU Bo, et al. Simultaneous multibeam resource allocation scheme for multiple target tracking[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3110–3122. doi: 10.1109/TSP.2015.2417504
    [139]
    YAN Junkun, JIU Bo, LIU Hongwei, et al. Prior knowledge-based simultaneous multibeam power allocation algorithm for cognitive multiple targets tracking in clutter[J]. IEEE Transactions on Signal Processing, 2015, 63(2): 512–527. doi: 10.1109/TSP.2014.2371774
    [140]
    YUAN Ye, YI Wei, HOSEINNEZHAD R, et al. Robust power allocation for resource-aware multi-target tracking with colocated MIMO radars[J]. IEEE Transactions on Signal Processing, 2020, 69: 443–458. doi: 10.1109/TSP.2020.3047519
    [141]
    ZHANG Haowei, LIU Weijian, ZONG Binfeng, et al. An efficient power allocation strategy for maneuvering target tracking in cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2021, 69: 1591–1602. doi: 10.1109/TSP.2020.3047227
    [142]
    SHI Yuchun, JIU Bo, YAN Junkun, et al. Data-driven simultaneous multibeam power allocation: When multiple targets tracking meets deep reinforcement learning[J]. IEEE Systems Journal, 2021, 15(1): 1264–1274. doi: 10.1109/JSYST.2020.2984774
    [143]
    YUAN Ye, YI Wei, KIRUBARAJAN T, et al. Scaled accuracy based power allocation for multi-target tracking with colocated MIMO radars[J]. Signal Processing, 2019, 158: 227–240. doi: 10.1016/j.sigpro.2019.01.014
    [144]
    SHARAGA N, TABRIKIAN J, and MESSER H. Optimal cognitive beamforming for target tracking in MIMO radar/sonar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1440–1450. doi: 10.1109/JSTSP.2015.2467354
    [145]
    LI Zhengjie, XIE Junwei, ZHANG Haowei, et al. Joint beam selection and power allocation in cognitive collocated MIMO radar for potential guidance application under oppressive jamming[J]. Digital Signal Processing, 2022, 127: 103579. doi: 10.1016/j.dsp.2022.103579
    [146]
    ZHANG Haowei, ZONG Binfeng, and XIE Junwei. Power and bandwidth allocation for multi-target tracking in collocated MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9795–9806. doi: 10.1109/TVT.2020.3002899
    [147]
    ZHANG Haowei, LIU Weijian, XIE Junwei, et al. Space-time allocation for transmit beams in collocated MIMO radar[J]. Signal Processing, 2019, 164: 151–162. doi: 10.1016/j.sigpro.2019.04.003
    [148]
    ZHANG Haowei, XIE Junwei, SHI Junpeng, et al. Joint beam and waveform selection for the MIMO radar target tracking[J]. Signal Processing, 2019, 156: 31–40. doi: 10.1016/j.sigpro.2018.09.009
    [149]
    CHENG Ting, LI Shuyi, and ZHANG Jie. Adaptive resource management in multiple targets tracking for co‐located multiple input multiple output radar[J]. IET Radar, Sonar & Navigation, 2018, 12(9): 1038–1045. doi: 10.1049/iet-rsn.2018.5153
    [150]
    SU Yang, CHENG Ting, HE Zishu, et al. Adaptive simultaneous multibeam resource management for colocated MIMO radar in multiple targets tracking[J]. Signal Processing, 2020, 172: 107543. doi: 10.1016/j.sigpro.2020.107543
    [151]
    LI Xi, CHENG Ting, SU Yang, et al. Joint time-space resource allocation and waveform selection for the collocated MIMO radar in multiple targets tracking[J]. Signal Processing, 2020, 176: 107650. doi: 10.1016/j.sigpro.2020.107650
    [152]
    YAN Junkun, LIU Hongwei, PU Wenqiang, et al. Joint beam selection and power allocation for multiple target tracking in netted colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2016, 64(24): 6417–6427. doi: 10.1109/TSP.2016.2607147
    [153]
    YI Wei, YUAN Ye, HOSEINNEZHAD R, et al. Resource scheduling for distributed multi-target tracking in netted colocated MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2020, 68: 1602–1617. doi: 10.1109/TSP.2020.2976587
    [154]
    SU Yang, CHENG Ting, HE Zishu, et al. Joint waveform control and resource optimization for maneuvering targets tracking in netted colocated MIMO radar systems[J]. IEEE Systems Journal, 2021.
    [155]
    LU Yanxi, HAN Chunlin, HE Zishu, et al. Adaptive JSPA in distributed colocated MIMO radar network for multiple targets tracking[J]. IET Radar, Sonar & Navigation, 2019, 13(3): 410–419. doi: 10.1049/iet-rsn.2018.5278
    [156]
    SUN Hao, LI Ming, ZUO Lei, et al. Resource allocation for multitarget tracking and data reduction in radar network with sensor location uncertainty[J]. IEEE Transactions on Signal Processing, 2021, 69: 4843–4858. doi: 10.1109/TSP.2021.3101018
    [157]
    WANG Ting, ZHAO Yongjun, HUANG Jie, et al. A reduced-rank STAP algorithm for simultaneous clutter plus jamming suppression in airborne MIMO radar[C]. 2017 18th International Radar Symposium, Prague, 2017: 1–10.
    [158]
    郭艺夺, 宫健, 黄大荣, 等. 机载MIMO雷达收发联合降维STAP算法统一理论框架[J]. 雷达学报, 2016, 5(5): 517–525. doi: 10.12000/JR16108

    GUO Yiduo, GONG Jian, HUANG Darong, et al. Unified theoretical frame of a joint transmitter-receiver reduced dimensional STAP method for an airborne MIMO radar[J]. Journal of Radars, 2016, 5(5): 517–525. doi: 10.12000/JR16108
    [159]
    ZHAO Xiang, HE Zishu, WANG Yikai, et al. Reduced-dimension STAP using a modified generalised sidelobe canceller for collocated MIMO radars[J]. IET Radar, Sonar & Navigation, 2018, 12(12): 1476–1483. doi: 10.1049/iet-rsn.2018.5239
    [160]
    PANG Xiaojiao, ZHAO Yongbo, CAO Chenghu, et al. Joint design of transmit beamspace and reduced‐dimension receiver filter for MIMO radar STAP[J]. IET Radar, Sonar & Navigation, 2021, 15(6): 655–665. doi: 10.1049/rsn2.12077
    [161]
    WARD J. Space-time adaptive processing for airborne radar[R]. Tech. Rep. 1015, 1994.
    [162]
    WANG Guohua and LU Yilong. Clutter rank of STAP in MIMO radar with waveform diversity[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 938–943. doi: 10.1109/TSP.2009.2031301
    [163]
    FENG Weike, ZHANG Yongshun, and HE Xingyu. Complexity reduction and clutter rank estimation for MIMO-phased STAP radar with subarrays at transmission[J]. Digital Signal Processing, 2017, 60: 296–306. doi: 10.1016/j.dsp.2016.10.004
    [164]
    FENG Weike, ZHANG Yongshun, and HE Xingyu. Clutter rank estimation for reduce-dimension space-time adaptive processing MIMO radar[J]. IEEE Sensors Journal, 2017, 17(2): 238–239. doi: 10.1109/JSEN.2016.2632308
    [165]
    ZHOU Yan, CHEN Xiaoxuan, LI Yanyan, et al. A fast STAP method using persymmetry covariance matrix estimation for clutter suppression in airborne MIMO radar[J]. EURASIP Journal on Advances in Signal Processing, 2019, 2019(1): 13. doi: 10.1186/s13634-019-0610-z
    [166]
    HUANG Junsheng, SU Hongtao, and YANG Yang. Low-complexity robust adaptive beamforming method for MIMO radar based on covariance matrix estimation and steering vector mismatch correction[J]. IET Radar, Sonar & Navigation, 2019, 13(5): 712–720. doi: 10.1049/iet-rsn.2018.5416
    [167]
    SALARI S, CHAN F, CHAN Y T, et al. Joint DOA and clutter covariance matrix estimation in compressive sensing MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 318–331. doi: 10.1109/TAES.2018.2850459
    [168]
    BRELOY A, GINOLHAC G, GAO Yongchan, et al. MIMO filters based on robust rank-constrained Kronecker covariance matrix estimation[J]. Signal Processing, 2021, 187: 108116. doi: 10.1016/j.sigpro.2021.108116
    [169]
    SUN Guohao, LI Ming, TONG Jun, et al. Structured clutter covariance matrix estimation for airborne MIMO radar with limited training data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 3500905. doi: 10.1109/LGRS.2020.3027818
    [170]
    XUE Ming, ROBERTS W, LI Jian, et al. MIMO radar sparse angle-Doppler imaging for ground moving target indication[C]. 2010 IEEE Radar Conference, Arlington, USA, 2010: 553–558.
    [171]
    TANG Bo and TANG Jun. Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707–4722. doi: 10.1109/TSP.2016.2569431
    [172]
    NOSRATI H, ABOUTANIOS E, and SMITH D. Multi-stage antenna selection for adaptive beamforming in MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 1374–1389. doi: 10.1109/TSP.2020.2973544
    [173]
    O’ROURKE S M, SETLUR P, RANGASWAMY M, et al. Quadratic semidefinite programming for waveform-constrained joint filter-signal design in STAP[J]. IEEE Transactions on Signal Processing, 2020, 68: 1744–1759. doi: 10.1109/TSP.2020.2977271
    [174]
    SUN Guohao, HE Zishu, TONG Jun, et al. Mutual information-based waveform design for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 2909–2921. doi: 10.1109/TGRS.2020.3008320
    [175]
    LI Zhihui, TANG Bo, SHI Junpeng, et al. Maximin joint design of transmit waveform and receive filter bank for MIMO-STAP radar under target uncertainties[J]. IEEE Signal Processing Letters, 2022, 29: 179–183. doi: 10.1109/LSP.2021.3131092
    [176]
    LI Zhihui, SHI Junpeng, LIU Weijian, et al. Robust joint design of transmit waveform and receive filter for MIMO-STAP radar under target and clutter uncertainties[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 1156–1171. doi: 10.1109/TVT.2021.3135513
    [177]
    LI Zhihui, MAO Yunxiang, ZHOU Qingsong, et al. Joint design of transmit beamforming and receive filter for transmit subaperturing MIMO STAP radar[J]. Multidimensional Systems and Signal Processing, 2022, 33(1): 143–165. doi: 10.1007/s11045-021-00790-z
    [178]
    ZHOU Qingsong, LI Zhihui, MAO Yunxiang, et al. Robust joint design of transmit beamforming and receive filter for TB-MIMO STAP radar[J]. Wireless Personal Communications, 2022: 1–14. doi: 10.1007/s11277-022-09733-8
    [179]
    KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi: 10.1109/TGRS.2013.2263934
    [180]
    LIU Shangwen, ZHANG Zenghui, and YU Wenxian. A space-time coding scheme with time and frequency comb-like chirp waveforms for MIMO-SAR[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 391–403. doi: 10.1109/JSTSP.2016.2631945
    [181]
    QIN Lilong, VOROBYOV S A, and DONG Zhen. Joint cancelation of autocorrelation sidelobe and cross correlation in MIMO-SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 931–935. doi: 10.1109/LGRS.2017.2688122
    [182]
    WANG Wenqin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094–3104. doi: 10.1109/TGRS.2011.2116030
    [183]
    ZHU Rongqiang, ZHOU Jianxiong, JIANG Ge, et al. Range migration algorithm for near-field MIMO-SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2280–2284. doi: 10.1109/LGRS.2017.2761838
    [184]
    ZHANG Wenji and HOORFAR A. A generalized approach for SAR and MIMO radar imaging of building interior targets with compressive sensing[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1052–1055. doi: 10.1109/LAWP.2015.2394746
    [185]
    WANG Yong and LI Xuelu. 3-D imaging based on combination of the ISAR technique and a MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6033–6054. doi: 10.1109/TGRS.2018.2829912
    [186]
    WANG Dangwei, MA Xiaoyan, CHEN A L, et al. High-resolution imaging using a wideband MIMO radar system with two distributed arrays[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1280–1289. doi: 10.1109/TIP.2009.2039623
    [187]
    MA Changzheng, YEO T S, TAN C S, et al. Three-dimensional imaging of targets using colocated MIMO radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3009–3021. doi: 10.1109/TGRS.2011.2119321
    [188]
    TAN Xing, ROBERTS W, LI Jian, et al. Sparse learning via iterative minimization with application to MIMO radar imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1088–1101. doi: 10.1109/TSP.2010.2096218
    [189]
    DICKMANN J, KLAPPSTEIN J, HAHN M, et al. Automotive radar the key technology for autonomous driving: From detection and ranging to environmental understanding[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6.
    [190]
    ZHANG Wei, WANG Ping, HE Ningyu, et al. Super resolution DOA based on relative motion for FMCW automotive radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8698–8709. doi: 10.1109/TVT.2020.2999640
    [191]
    PATOLE S M, TORLAK M, WANG Dan, et al. Automotive radars: A review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22–35. doi: 10.1109/MSP.2016.2628914
    [192]
    ROHLING H. Radar CFAR thresholding in clutter and multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(4): 608–621. doi: 10.1109/TAES.1983.309350
    [193]
    ZHANG Wei, HE Ningyu, HE Zishu, et al. Approach of 2D direction of arrival estimation of FMCW traffic radar by utilising 1D array[J]. Electronics Letters, 2020, 56(2): 97–99. doi: 10.1049/el.2019.3072
    [194]
    HU Xueyao, LI Yang, LU Man, et al. A multi-carrier-frequency random-transmission chirp sequence for TDM MIMO automotive radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3672–3685. doi: 10.1109/TVT.2019.2900357
    [195]
    PFEFFER C, FEGER R, WAGNER C, et al. FMCW MIMO radar system for frequency-division multiple TX-beamforming[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4262–4274. doi: 10.1109/TMTT.2013.2287675
    [196]
    SAMMARTINO P F, BAKER C J, and GRIFFITHS H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. doi: 10.1109/TAES.2013.6404099
    [197]
    GUERMANDI D, SHI Qixian, DEWILDE A, et al. A 79-GHz 2×2 MIMO PMCW radar SoC in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2017, 52(10): 2613–2626. doi: 10.1109/JSSC.2017.2723499
    [198]
    FUCHS J, GARDILL M, LÜBKE M, et al. A machine learning perspective on automotive radar direction of arrival estimation[J]. IEEE Access, 2022, 10: 6775–6797. doi: 10.1109/ACCESS.2022.3141587
    [199]
    LIU Zhenyu, WU Jiayan, YANG Siyuan, et al. DOA estimation method based on EMD and MUSIC for mutual interference in FMCW automotive radars[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 3504005. doi: 10.1109/LGRS.2021.3058729
    [200]
    LIN Jiaying, DIEKMANN P, FRAMING C E, et al. Maritime environment perception based on deep learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022.
    [201]
    ZHENG Chundi, CHEN Huihui, and WANG Aiguo. High angular resolution for 77GHz FMCW radar via a sparse weighted quadratic minimization[J]. IEEE Sensors Journal, 2021, 21(9): 10637–10646. doi: 10.1109/JSEN.2021.3060428
    [202]
    LI Bin, WANG Shusen, FENG Zhiyong, et al. Fast pseudospectrum estimation for automotive massive MIMO radar[J]. IEEE Internet of Things Journal, 2021, 8(20): 15303–15316. doi: 10.1109/JIOT.2021.3052512
    [203]
    BIALER O, JONAS A, and TIRER T. Super resolution wide aperture automotive radar[J]. IEEE Sensors Journal, 2021, 21(16): 17846–17858. doi: 10.1109/JSEN.2021.3085677
    [204]
    ZHANG Shuimei, AHMED A, ZHANG Y D, et al. Enhanced DOA estimation exploiting multi-frequency sparse array[J]. IEEE Transactions on Signal Processing, 2021, 69: 5935–5946. doi: 10.1109/TSP.2021.3122292
    [205]
    SUN Shunqiao and ZHANG Y D. 4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 879–891. doi: 10.1109/JSTSP.2021.3079626
    [206]
    WANG Hui, CHEN Xiang, and SUN Jiazheng. FMCW SAR imaging algorithm of sliding spotlight mode[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 4020205. doi: 10.1109/LGRS.2021.3119848
    [207]
    WANG Shuai, WANG Bingnan, XIANG Maosheng, et al. Signal modeling and imaging of frequency-modulated continuous wave sliding spotlight synthetic aperture Ladar[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 4007305. doi: 10.1109/LGRS.2020.3043747
    [208]
    LEE W H and LEE S. Geometric sequence decomposition-based interference cancellation in automotive radar systems[J]. IEEE Access, 2022, 10: 4318–4327. doi: 10.1109/ACCESS.2022.3141543
    [209]
    KIM G, MUN J, and LEE J. A peer-to-peer interference analysis for automotive chirp sequence radars[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8110–8117. doi: 10.1109/TVT.2018.2848898
    [210]
    ROCK J, ROTH W, TOTH M, et al. Resource-efficient deep neural networks for automotive radar interference mitigation[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 927–940. doi: 10.1109/JSTSP.2021.3062452
    [211]
    BOSE A, TANG Bo, SOLTANALIAN M, et al. Mutual interference mitigation for multiple connected automotive radar systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 11062–11066. doi: 10.1109/TVT.2021.3108714
    [212]
    WANG Yong, SHU Yuhong, JIA Xiuqian, et al. Multifeature fusion-based hand gesture sensing and recognition system[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 3507005. doi: 10.1109/LGRS.2021.3086136
    [213]
    CHENG Yuwei and LIU Yimin. Person reidentification based on automotive radar point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5101913. doi: 10.1109/TGRS.2021.3073664
    [214]
    SHI Kun, SHI Zhiguo, YANG Chaoqun, et al. Road-map aided GM-PHD filter for multivehicle tracking with automotive radar[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 97–108. doi: 10.1109/TII.2021.3073032
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3657) PDF downloads(933) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint