Volume 11 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
WANG Bingnan, ZHAO Juanying, LI Wei, et al. Array synthetic aperture ladar with high spatial resolution technology[J]. Journal of Radars, 2022, 11(6): 1110–1118. doi: 10.12000/JR22204
Citation: WANG Bingnan, ZHAO Juanying, LI Wei, et al. Array synthetic aperture ladar with high spatial resolution technology[J]. Journal of Radars, 2022, 11(6): 1110–1118. doi: 10.12000/JR22204

Array Synthetic Aperture Ladar with High Spatial Resolution Technology

doi: 10.12000/JR22204
Funds:  The Major Project of High-Resolution Earth Observation System of China
More Information
  • Corresponding author: ZHAO Juanying, zhaojuanying@163.com
  • Received Date: 2022-10-14
  • Rev Recd Date: 2022-11-25
  • Available Online: 2022-11-28
  • Publish Date: 2022-12-05
  • By extending synthetic aperture technology from the microwave band to the laser wavelength, Synthetic Aperture Ladar (SAL) has long-distance imaging and extremely high spatial resolution independent of the target distance. Presently, the small field of view is the key constraint in SAL ground observation because of the laser diffraction limitation. In this paper, an array SAL technology is proposed. With high-power array transmission, array-balanced detection, and pulse-wise dynamic internal calibration, a multichannel coherent laser transceiver is realized. Meanwhile, the field of view has multiplied. The results of turntable experiments show that the imaging resolution is better than 3 cm (distance) × 1 cm (azimuth). This technology provides a scientific and technical approach to SAL with wider swath imaging in ground observation.

     

  • loading
  • [1]
    LEWIS T S and HUTCHINS H S. A synthetic aperture at optical frequencies[J]. Proceedings of the IEEE, 1970, 58(4): 587–588. doi: 10.1109/PROC.1970.7698
    [2]
    MARCUS S, COLELLA B D, and GREEN T J. Solid-state laser synthetic aperture radar[J]. Applied Optics, 1994, 33(6): 960–964. doi: 10.1364/AO.33.000960
    [3]
    GREEN T J, MARCUS S, and COLELLA B D. Synthetic-aperture-radar imaging with a solid-state laser[J]. Applied Optics, 1995, 34(30): 6941–6949. doi: 10.1364/AO.34.006941
    [4]
    BASHKANSKY M, LUCKE R L, FUNK E, et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Optics Letters, 2002, 27(22): 1983–1985. doi: 10.1364/OL.27.001983
    [5]
    BECK S M, BUCK J R, BUELL W F, et al. Synthetic-aperture imaging laser radar: Laboratory demonstration and signal processing[J]. Applied Optics, 2005, 44(35): 7621–7629. doi: 10.1364/AO.44.007621
    [6]
    KRAUSE B W, BUCK J, RYAN C, et al. Synthetic aperture Ladar flight demonstration[C]. Laser Science to Photonic Applications, Baltimore, USA, 2011: 1–2.
    [7]
    郭亮. 合成孔径成像激光雷达实验与算法研究[D]. [博士论文], 西安电子科技大学, 2009: 43–62.

    GUO Liang. Study on experiment and algorithm of synthetic aperture imaging Lidar[D]. [Ph. D. dissertation], Xidian University, 2009: 43–62.
    [8]
    刘立人, 周煜, 职亚楠, 等. 大口径合成孔径激光成像雷达演示样机及其实验室验证[J]. 光学学报, 2011, 31(9): 0900112. doi: 10.3788/AOS201131.0900112

    LIU Liren, ZHOU Yu, ZHI Ya’nan, et al. A large-aperture synthetic aperture imaging Ladar demonstrator and its verification in laboratory space[J]. Acta Optica Sinica, 2011, 31(9): 0900112. doi: 10.3788/AOS201131.0900112
    [9]
    吴谨, 杨兆省, 赵志龙, 等. 单程远场衍射合成孔径激光雷达成像实验室演示[J]. 红外与毫米波学报, 2013, 32(6): 514–518. doi: 10.3724/SP.J.1010.2013.00514

    WU Jin, YANG Zhaosheng, ZHAO Zhilong, et al. Synthetic aperture Ladar imaging with one-way far-field diffraction[J]. Journal of Infrared and Millimeter Waves, 2013, 32(6): 514–518. doi: 10.3724/SP.J.1010.2013.00514
    [10]
    LI Guangzuo, WANG Ning, WANG Ran, et al. Imaging method for airborne SAL data[J]. Electronics Letters, 2017, 53(5): 351–353. doi: 10.1049/el.2016.4205
    [11]
    张珂殊, 潘洁, 王然, 等. 大幅宽激光合成孔径雷达成像技术研究[J]. 雷达学报, 2017, 6(1): 1–10. doi: 10.12000/JR16152

    ZHANG Keshu, PAN Jie, WANG Ran, et al. Study of wide swath synthetic aperture Ladar imaging techology[J]. Journal of Radars, 2017, 6(1): 1–10. doi: 10.12000/JR16152
    [12]
    张波, 周煜, 孙建锋, 等. 多通道宽幅度合成孔径激光成像雷达收发装置优化研究[J]. 光学学报, 2018, 38(5): 0528002. doi: 10.3788/AOS201838.0528002

    ZHANG Bo, ZHOU Yu, SUN Jianfeng, et al. Optimization research on multi-channel wide-swath synthetic aperture imaging Ladar transceiver system[J]. Acta Optica Sinica, 2018, 38(5): 0528002. doi: 10.3788/AOS201838.0528002
    [13]
    李道京, 周凯, 崔岸婧, 等. 多通道逆合成孔径激光雷达成像探测技术和实验研究[J]. 激光与光电子学进展, 2021, 58(18): 1811017. doi: 10.3788/LOP202158.1811017

    LI Daojing, ZHOU Kai, CUI Anjing, et al. Multi-channel inverse synthetic aperture Ladar imaging detection technology and experimental research[J]. Laser &Optoelectronics Progress, 2021, 58(18): 1811017. doi: 10.3788/LOP202158.1811017
    [14]
    META A, HOOGEBOOM P, and LIGTHART L. Range non-linearities correction in FMCW SAR[C]. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 403–406.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(839) PDF downloads(179) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint