Volume 9 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
BI Hui, ZHANG Bingchen, HONG Wen, et al. Verification of complex image based sparse SAR imaging method on GaoFen-3 dataset[J]. Journal of Radars, 2020, 9(1): 123–130. doi: 10.12000/JR19092
Citation: BI Hui, ZHANG Bingchen, HONG Wen, et al. Verification of complex image based sparse SAR imaging method on GaoFen-3 dataset[J]. Journal of Radars, 2020, 9(1): 123–130. doi: 10.12000/JR19092

Verification of Complex Image Based Sparse SAR Imaging Method on GaoFen-3 Dataset

DOI: 10.12000/JR19092
Funds:  The National Natural Science Foundation of China (61901213), The Natural Science Foundation of Jiangsu Province (BK20190397), The Young Science and Technology Talent Support Project of Jiangsu Science and Technology Association
More Information
  • Corresponding author: BI Hui, bihui@nuaa.edu.cn
  • Received Date: 2019-10-15
  • Rev Recd Date: 2020-01-12
  • Available Online: 2020-01-30
  • Publish Date: 2020-02-28
  • Sparse signal processing-based Synthetic Aperture Radar (SAR) imaging, also known as sparse SAR imaging, is the main research direction of sparse microwave imaging theory. Compared with a conventional SAR system, sparse SAR imaging radar has significant potential to improve imaging performance. However, because it requires heavy computations, the application of sparse SAR imaging in large-scene recovery has become difficult, which restricts its further applications. Additionally, complex SAR images, rather than raw data, are usually used for data archiving due to a number of reasons such as data copyright and system confidentiality. Therefore, it is worthwhile to study how sparse imaging can be achieved using only Matched Filtering (MF) recovered complex images with less computational cost. GaoFen-3 is China’s first 1-m resolution multi-polarization C-band satellite. It has a high-resolution, wide swath imaging ability and hence plays an important role in disaster monitoring and ocean surveillance applications. In this paper, we introduce a complex image-based sparse SAR imaging method to process GaoFen-3 complex image data and improve image performance. Experimental results show that the sparse imaging results have lower sidelobes, higher signal-to-clutter and noise ratio, and better target distinguishing ability compared with inputted images. Additionally, sparse imaging can effectively preserve the statistical distribution and phase information of images that makes the recovered GaoFen-3 sparse image-based applications such as interferometric synthetic aperture radar and constant false alarm ratio detection possible.

     

  • loading
  • [1]
    CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York, USA: Wiley-Interscience, 1991.
    [2]
    CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005.
    [3]
    ZHANG Bingchen, HONG Wen, and WU Yirong. Sparse microwave imaging: Principles and applications[J]. Science China Information Sciences, 2012, 55(7): 1722–1754.
    [4]
    吴一戎, 洪文, 张冰尘, 等. 稀疏微波成像研究进展(科普类)[J]. 雷达学报, 2014, 3(4): 383–395. doi: 10.3724/SP.J.1300.2014.14105

    WU Yirong, HONG Wen, ZHANG Bingchen, et al. Current developments of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 383–395. doi: 10.3724/SP.J.1300.2014.14105
    [5]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [6]
    CANDÈS E J, ROMBERG J K, and TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207–1223. doi: 10.1002/cpa.20124
    [7]
    NYQUIST H. Certain topics in telegraph transmission theory[J]. Transactions of the American Institute of Electrical Engineers, 1928, 47(2): 617–644. doi: 10.1109/T-AIEE.1928.5055024
    [8]
    SHANNON C E. Communication in the presence of noise[J]. Proceedings of the IRE, 1949, 37(1): 10–21.
    [9]
    ÇETIN M and KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization[J]. IEEE Transactions on Image Processing, 2001, 10(4): 623–631. doi: 10.1109/83.913596
    [10]
    BHATTACHARYA S, BLUMENSATH T, MULGREW B, et al. Fast encoding of synthetic aperture radar raw data using compressed sensing[C]. The 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, USA, 2007: 448–452.
    [11]
    ALONSO M T, LOPEZ-DEKKER P, and MALLORQUI J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285–4295. doi: 10.1109/TGRS.2010.2051231
    [12]
    PATEL V M, EASLEY G R, HEALY JR D M, et al. Compressed synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244–254. doi: 10.1109/JSTSP.2009.2039181
    [13]
    KELLY S I, DU C, RILLING G, et al. Advanced image formation and processing of partial synthetic aperture radar data[J]. IET Signal Processing, 2012, 6(5): 511–520. doi: 10.1049/iet-spr.2011.0073
    [14]
    GÜVEN H E, GÜNGÖR A, and ÇETIN M. An augmented Lagrangian method for complex-valued compressed SAR imaging[J]. IEEE Transactions on Computational Imaging, 2016, 2(3): 235–250. doi: 10.1109/TCI.2016.2580498
    [15]
    YANG Jungang, THOMPSON J, HUANG Xiaotao, et al. Segmented reconstruction for compressed sensing SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7): 4214–4225. doi: 10.1109/TGRS.2012.2227060
    [16]
    FANG Jian, XU Zongben, ZHANG Bingchen, et al. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 352–363. doi: 10.1109/JSTARS.2013.2263309
    [17]
    BI Hui, ZHANG Bingchen, ZHU Xiaoxiang, et al. L1-regularization-based SAR imaging and CFAR detection via complex approximated message passing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3426–3440. doi: 10.1109/TGRS.2017.2671519
    [18]
    BI Hui, ZHANG Bingchen, ZHU Xiaoxiang, et al. Azimuth-range decouple-based L1 regularization method for wide ScanSAR imaging via extended chirp scaling[J]. Journal of Applied Remote Sensing, 2017, 11(1): 015007. doi: 10.1117/1.JRS.11.015007
    [19]
    BI Hui, ZHANG Bingchen, ZHU Xiaoxiang, et al. Extended chirp scaling-baseband azimuth scaling-based azimuth-range decouple L1 regularization for TOPS SAR imaging via CAMP[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3748–3763. doi: 10.1109/TGRS.2017.2679129
    [20]
    BI Hui, ZHANG Bingchen, WANG Zhengdao, et al. Lq regularisation-based synthetic aperture radar image feature enhancement via iterative thresholding algorithm[J]. Electronics Letters, 2016, 52(15): 1336–1338. doi: 10.1049/el.2016.1168
    [21]
    BI Hui, BI Guoan, ZHANG Bingchen, et al. Complex-image-based sparse SAR imaging and its equivalence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5006–5014. doi: 10.1109/TGRS.2018.2803802
    [22]
    姚天宇. 长征四号丙运载火箭成功发射高分三号卫星[J]. 中国航天, 2016(8): 8.

    YAO Tianyu. The ChangZheng-4C carrier rocket successfully launched the GaoFen-3 satellite[J]. Aerospace China, 2016(8): 8.
    [23]
    BI Hui and BI Guoan. A novel iterative soft thresholding algorithm for L1 regularization based SAR image enhancement[J]. Science China Information Sciences, 2019, 62(4): 49303. doi: 10.1007/s11432-018-9662-y
    [24]
    ÇETIN M, KARL W C, and CASTAÑON D A. Feature enhancement and ATR performance using nonquadratic optimization-based SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1375–1395. doi: 10.1109/TAES.2003.1261134
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4628) PDF downloads(431) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint