Citation: | HU Zhanyi. A note on visual semantics in SAR 3D imaging[J]. Journal of Radars, 2022, 11(1): 20–26. doi: 10.12000/JR21149 |
[1] |
MARR D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information[M]. New York: W. H. Freeman, 1982.
|
[2] |
OHZAWA I, DEANGELIS G C, and FREEMAN R D. Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors[J]. Science, 1990, 249(4972): 1037–1041. doi: 10.1126/science.2396096
|
[3] |
HAEFNER R M and CUMMING B G. Adaptation to natural binocular disparities in primate V1 explained by a generalized energy model[J]. Neuron, 2008, 57(1): 147–158. doi: 10.1016/j.neuron.2007.10.042
|
[4] |
BRENNER E and SMEETS J B. Depth Perception[M]. WIXTED J. Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience: Sensation, Perception, and Attention. 4th ed. New York: John Wiley & Sons, 2018: 385–414.
|
[5] |
丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090
DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
|
[6] |
DEL CAMPO G M, NANNINI M, and REIGBER A. Statistical regularization for enhanced TomoSAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1567–1589. doi: 10.1109/JSTARS.2020.2970595
|
[7] |
ZHU Xiaoxiang and BAMLER R. Tomographic SAR inversion by L1-norm regularization—The compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839–3846. doi: 10.1109/TGRS.2010.2048117
|
[8] |
RAMBOUR C, DENIS L, TUPIN F, et al. Introducing spatial regularization in SAR tomography reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8600–8617. doi: 10.1109/TGRS.2019.2921756
|
[9] |
VIOLA P and JONES M. Rapid object detection using a boosted cascade of simple features[C]. 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001: I–I. doi: 10.1109/CVPR.2001.990517.
|
[10] |
FISCHLER M A and BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381–395. doi: 10.1145/358669.358692
|
[11] |
RAMBOUR C, DENIS L, TUPIN F, et al. Urban surface reconstruction in SAR tomography by graph-cuts[J]. Computer Vision and Image Understanding, 2019, 188: 102791. doi: 10.1016/j.cviu.2019.07.011
|
[12] |
LINDEBERG T. Scale-space[M]. WAH B W. Wiley Encyclopedia of Computer Science and Engineering. Hoboken: John Wiley & Sons, Inc. , 2008: 2495–2504. doi: 10.1002/9780470050118.ecse609.
|
[13] |
CUI Hainan, GAO Xiang, SHNE Shuhan, et al. HSfM: Hybrid Structure-from-motion[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2393–2402. doi: 10.1109/CVPR.2017.257.
|
[14] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91–110. doi: 10.1023/B:VISI.0000029664.99615.94
|
[15] |
KOLMOGOROV V and ZABIN R. What energy functions can be minimized via graph cuts?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147–159. doi: 10.1109/TPAMI.2004.1262177
|
[16] |
COSTANTE G, CIARFUGLIA T A, and BIONDI F. Towards monocular digital elevation model (DEM) estimation by convolutional neural networks - Application on synthetic aperture radar images[J]. arXiv: 1803.05387, 2018: 1–6.
|
[17] |
BUDILLON A, JOHNSY A C, SCHIRINZI G, et al. SAR tomography based on deep learning[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3625–3628. doi: 10.1109/IGARSS.2019.8900616.
|
[18] |
WU Chunxiao, ZHANG Zenghui, CHEN Longyong, et al. Super-resolution for MIMO array SAR 3-D imaging based on compressive sensing and deep neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3109–3124. doi: 10.1109/JSTARS.2020.3000760
|
[19] |
XU Dan, RICCI E, OUYANG Wanli, et al. Multi-scale continuous CRFs as sequential deep networks for monocular depth estimation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 161–169. doi: 10.1109/CVPR.2017.25.
|
[20] |
WANG Yuanyuan and ZHU Xiaoxiang. SAR tomography via nonlinear blind scatterer separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5751–5763. doi: 10.1109/TGRS.2020.3022209
|
[21] |
FORNARO G, VERDE S, REALE D, et al. CAESAR: An approach based on covariance matrix decomposition to improve multibaseline-multitemporal interferometric SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2050–2065. doi: 10.1109/TGRS.2014.2352853
|
[1] | REN Zhenyu, JI Chenqing, YU Chao, CHEN Wanli, WANG Rui. Computer Vision-assisted Wireless Channel Simulation for Millimeter Wave Human Motion Recognition[J]. Journal of Radars, 2025, 14(1): 90-102. doi: 10.12000/JR24101 |
[2] | YOU Ruixi, QIAN Yutong, XU Feng. Preliminary Research on the Effectiveness of Gestalt Perceptual Principles in SAR Images[J]. Journal of Radars, 2024, 13(2): 345-358. doi: 10.12000/JR23187 |
[3] | QIU Xiaolan, LUO Yitong, SONG Shujie, PENG Lingxiao, CHENG Yao, YAN Qiancheng, SHANGGUAN Songtao, JIAO Zekun, ZHANG Zhe, DING Chibiao. Microwave Vision Three-dimensional SAR Experimental System and Full-polarimetric Data Processing Method[J]. Journal of Radars, 2024, 13(5): 941-954. doi: 10.12000/JR24137 |
[4] | HUANG Zhongling, WU Chong, YAO Xiwen, WANG Lipeng, HAN Junwei. Physically Explainable Intelligent Perception and Application of SAR Target Characteristics Based on Time-frequency Analysis[J]. Journal of Radars, 2024, 13(2): 331-344. doi: 10.12000/JR23191 |
[5] | XU Feng, JIN Yaqiu. Microwave Vision and Intelligent Perception of Radar Imagery[J]. Journal of Radars, 2024, 13(2): 285-306. doi: 10.12000/JR23225 |
[6] | REN Yexian, XU Feng. Comparative Experiments on Separation Performance of Overlapping Scatterers with Several Tomography Imaging Methods[J]. Journal of Radars, 2022, 11(1): 71-82. doi: 10.12000/JR21139 |
[7] | YU Longlong, FENG Dong, WANG Jian, HUANG Xiaotao. Estimation of the Minimum Number of Acquisitions for Coprime Tomographic Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(4): 618-636. doi: 10.12000/JR22047 |
[8] | DU Bang, QIU Xiaolan, ZHANG Zhe, LEI Bin, DING Chibiao. L1 Minimization with Perturbation for Off-grid Tomographic SAR Imaging[J]. Journal of Radars, 2022, 11(1): 62-70. doi: 10.12000/JR21093 |
[9] | ZHAO Yao, XU Juncong, QUAN Xiangyin, CUI Li, ZHANG Zhe. Tomographic SAR Imaging Method Based on Sparse and Low-rank Structures[J]. Journal of Radars, 2022, 11(1): 52-61. doi: 10.12000/JR21210 |
[10] | QIU Xiaolan, JIAO Zekun, YANG Zhenli, CHENG Yao, LIN Bei, LUO Yitong, WANG Wei, DONG Yongwei, ZHOU Liangjiang, DING Chibiao. Key Technology and Preliminary Progress of Microwave Vision 3D SAR Experimental System[J]. Journal of Radars, 2022, 11(1): 1-19. doi: 10.12000/JR22027 |
[11] | LIU Fangjian, LI Yuan. SAR Remote Sensing Image Ship Detection Method NanoDet Based on Visual Saliency[J]. Journal of Radars, 2021, 10(6): 885-894. doi: 10.12000/JR21105 |
[12] | LI Zhen, ZHANG Ping, QIAO Haiwei, ZHAO Changjun, ZHOU Jianmin, HUANG Lei. Advances in Information Extraction of Surface Parameters Using Tomographic SAR[J]. Journal of Radars, 2021, 10(1): 116-130. doi: 10.12000/JR20095 |
[13] | QIU Xiaolan, JIAO Zekun, PENG Lingxiao, CHEN Jiankun, GUO Jiayi, ZHOU Liangjiang, CHEN Longyong, DING Chibiao, XU Feng, DONG Qiulei, LYU Shouye. SARMV3D-1.0: Synthetic Aperture Radar Microwave Vision 3D Imaging Dataset[J]. Journal of Radars, 2021, 10(4): 485-498. doi: 10.12000/JR21112 |
[14] | XIE Jinwei, LI Zhenfang, WANG Fan, WANG Zhibin. SAR Tomography Imaging for Buildings Using an Inconsistency Criterion for Amplitude and Phase[J]. Journal of Radars, 2020, 9(1): 154-165. doi: 10.12000/JR19062 |
[15] | XU Zheng, WANG Xiaobei, LUO Yunhua. Accurate and Efficient Airborne Dual-channel SAR/GMTI Adaptive Channel Equalization Method[J]. Journal of Radars. doi: 10.12000/JR18099 |
[16] | JIN Yaqiu. Multimode Remote Sensing Intelligent Information and Target Recognition: Physical Intelligence of Microwave Vision (in English)[J]. Journal of Radars, 2019, 8(6): 710-716. doi: 10.12000/JR19083 |
[17] | DING Chibiao, QIU Xiaolan, XU Feng, LIANG Xingdong, JIAO Zekun, ZHANG Fubo. Synthetic Aperture Radar Three-dimensional Imaging——From TomoSAR and Array InSAR to Microwave Vision(in English)[J]. Journal of Radars, 2019, 8(6): 693-709. doi: 10.12000/JR19090 |
[18] | Wang Aichun, Xiang Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1): 57-64. doi: 10.12000/JR16006 |
[19] | Liao Ming-sheng, Wei Lian-huan, Wang Zi-yun, Timo Balz, Zhang Lu. Compressive Sensing in High-resolution 3D SAR Tomography of Urban Scenarios[J]. Journal of Radars, 2015, 4(2): 123-129. doi: 10.12000/JR15031 |
[20] | Xie Dong-dong, Wu Xia-yi, Yu Wei-dong. The Phase Stability Measure Method for Transmitting and Receiving Channels of Space-borne SAR[J]. Journal of Radars, 2012, 1(1): 96-99. doi: 10.3724/SP.J.1300.2013.20009 |
1. | Wei Wang,Haixia Wang,Liankun Yu,Qiulei Dong,Zhanyi Hu. Exploiting SAR visual semantics in Tomo SAR for 3D modeling of buildings. National Science Open. 2024(05): 6-25 . ![]() | |
2. | 仇晓兰,焦泽坤,杨振礼,程遥,蔺蓓,罗一通,王卫,董勇伟,周良将,丁赤飚. 微波视觉三维SAR关键技术及实验系统初步进展. 雷达学报. 2022(01): 1-19 . ![]() |