HUANG Yinli, SUN Lu, GUO Liang, et al. Ship detection algorithm based on spatially variant apodization sidelobe suppression and order statistic-constant false alarm rate[J]. Journal of Radars, 2020, 9(2): 335–342. doi: 10.12000/JR19082
Citation: QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027

Key Technology and Preliminary Progress of Microwave Vision 3D SAR Experimental System

DOI: 10.12000/JR22027
Funds:  The National Natural Science Foundation of China (61991420, 61991421, 61991424)
More Information
  • Corresponding author: QIU Xiaolan, xlqiu@mail.ie.ac.cn; DING Chibiao, cbding@mail.ie.ac.cn
  • Received Date: 2022-01-29
  • Accepted Date: 2022-02-19
  • Rev Recd Date: 2022-02-17
  • Available Online: 2022-02-19
  • Publish Date: 2022-02-24
  • Three-Dimensional (3D) Synthetic Aperture Radar (SAR) imaging has considerable application potential in steep-terrain mapping and target recognition in complex environments and is an important development direction in the current SAR field. To promote the development and application of the 3D SAR imaging technology, the Aerospace Information Research Institute, Chinese Academy of Sciences designed and developed an unmanned aerial vehicle-borne Microwave-Vision 3D SAR (MV3DSAR) experimental system, which provides an experimental platform for the research and verification of related technologies. Currently, the single-polarization version of the system has been developed, and the first flight experiment has been conducted in Tianjin. This study introduces the structure, performance, key technologies, and data processing of the system. This study also presents the implementation and preliminary data processing results of the first experiment, verifying the basic performance and 3D imaging capability of the system. The MV3DSAR provides a good experimental and verification platform for analyzing 3D SAR imaging algorithms and constructing 3D SAR imaging datasets.

     

  • [1]
    丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [2]
    张福博. 阵列干涉SAR三维重建信号处理技术研究[D]. [博士论文], 中国科学院大学, 2015.

    ZHANG Fubo. Research on signal processing of 3-D reconstruction in linear array synthetic aperture radar interferometry[D]. [Ph. D. dissertation], University of Chinese Academy of Sciences, 2015.
    [3]
    KLARE J, WEISS M, PETERS O, et al. ARTINO: A new high resolution 3D imaging radar system on an autonomous airborne platform[C]. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006.
    [4]
    WEISS M, PETERS O, and ENDER J. First flight trials with ARTINO[C]. The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008.
    [5]
    WEISS M and GILLES M. Initial ARTINO radar experiments[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 1–4.
    [6]
    LI Hang, LIANG Xingdong, ZHANG Fubo, et al. A novel 3-D reconstruction approach based on group sparsity of array InSAR[J]. SCIENTIA SINICA Informationis, 2018, 48(8): 1051–1064. doi: 10.1360/N112017-00023
    [7]
    仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112

    QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112
    [8]
    ZHU Xiaoxiang and BAMLER R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247–258. doi: 10.1109/TGRS.2011.2160183
    [9]
    丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063

    DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063
    [10]
    NANNINI M, SCHEIBER R, and MOREIRA A. Estimation of the minimum number of tracks for SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 531–543. doi: 10.1109/TGRS.2008.2007846
    [11]
    任烨仙, 徐丰. 若干层析SAR成像方法在解叠掩性能上的对比分析[J]. 雷达学报, 2022, 11(1): 71–82. doi: 10.12000/JR21139

    REN Yexian and XU Feng. Comparative experiments on separation performance of overlapping scatterers with several tomography imaging methods[J]. Journal of Radars, 2022, 11(1): 71–82. doi: 10.12000/JR21139
    [12]
    董勇伟, 梁兴东, 丁赤飚. 调频连续波SAR非线性处理方法研究[J]. 电子与信息学报, 2010, 32(5): 1034–1039. doi: 10.3724/SP.J.1146.2009.00582

    DONG Yongwei, LIANG Xingdong, and DING Chibiao. Non-linear signal processing for FMCW SAR[J]. Journal of Electronics &Information Technology, 2010, 32(5): 1034–1039. doi: 10.3724/SP.J.1146.2009.00582
    [13]
    FU Xikai, XIANG Maosheng, WANG Bingnan, et al. A robust yaw and pitch estimation method for mini-InSAR system[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2157–2161. doi: 10.1109/LGRS.2017.2756101
    [14]
    董勇伟, 李焱磊, 梁兴东, 等. 基于局部线性误差模型的调频连续波SAR运动补偿方法[P]. 中国, 201711370093.7, 2017.

    DONG Yongwei, LI Yanlei, LIANG Xingdong, et al. Local linear error model-based frequency modulation continuous wave SAR motion compensation method[P]. CN, 201711370093.7, 2017.
    [15]
    董勇伟. 基于调频连续波体制的SAR系统及其处理方法[P]. 中国, 201810978000.7, 2018.

    DONG Yongwei. SAR system based on frequency modulated continuous wave system as well as processing method thereof[P]. CN, 201810978000.7, 2018.
    [16]
    DENG Huazeng, FARQUHARSON G, BALABAN M, et al. System error analysis of an airborne along-track interferometric fmcw SAR for surface velocity estimate[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1677–1680.
    [17]
    董勇伟, 李焱磊, 丁满来, 等. 一种高分辨率W波段SAR系统[J]. 电子与信息学报, 2018, 40(5): 1266–1270. doi: 10.11999/JEIT170461

    DONG Yongwei, LI Yanlei, DING Manlai, et al. High resolution W-band SAR[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1266–1270. doi: 10.11999/JEIT170461
    [18]
    刘季超. LTCC微波元件的结构模型研究与设计[J]. 电子测试, 2020(5): 19–21. doi: 10.3969/j.issn.1000-8519.2020.05.005

    LIU Jichao. Research and design of LTCC microwave element structure model[J]. Electronic Test, 2020(5): 19–21. doi: 10.3969/j.issn.1000-8519.2020.05.005
    [19]
    JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013
    [20]
    李芳芳, 仇晓兰, 孟大地, 等. 机载双天线InSAR运动补偿误差的影响分析[J]. 电子与信息学报, 2013, 35(3): 559–567. doi: 10.3724/SP.J.1146.2012.00850

    LI Fangfang, QIU Xiaolan, MENG Dadi, et al. Effects of motion compensation errors on performance of airborne dual-antenna InSAR[J]. Journal of Electronics &Information Technology, 2013, 35(3): 559–567. doi: 10.3724/SP.J.1146.2012.00850
    [21]
    FU Xikai, XIANG Maosheng, JIANG Shuai, et al. Motion compensation scheme for LFM-CW miniature InSAR system mounted on small aircrafts[C]. The 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018: 1–3.
    [22]
    孟大地. 机载合成孔径雷达运动补偿算法研究[D]. [博士论文], 中国科学院电子学研究所, 2006.

    MENG Dadi. Research on motion compensation algorithm for airborne SAR[D]. [Ph. D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2006.
    [23]
    LUO Yitong, QIU Xiaolan, DONG Qian, et al. A robust stereo positioning solution for multiview spaceborne SAR images based on the range-Doppler model[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 4008705. doi: 10.1109/LGRS.2020.3048731
    [24]
    LV Zexin, LI Fangfang, QIU Xiaolan, et al. Effects of motion compensation residual error and polarization distortion on UAV-borne PolInSAR[J]. Remote Sensing, 2021, 13(4): 618. doi: 10.3390/rs13040618
    [25]
    卜运成. 阵列干涉SAR定标技术研究[D]. [博士论文], 中国科学院大学, 2018: 71–95.

    BU Yuncheng. Research on calibration technology of array synthetic aperture radar interferometry[D]. [Ph. D. dissertation], University of Chinese Academy of Sciences, 2018: 71–95.
    [26]
    卜运成, 王宇, 张福博, 等. 基于子空间正交的阵列干涉SAR系统相位中心位置定标方法[J]. 雷达学报, 2018, 7(3): 335–345. doi: 10.12000/JR18007

    BU Yuncheng, WANG Yu, ZHANG Fubo, et al. Antenna phase center calibration for array InSAR system based on orthogonal subspace[J]. Journal of Radars, 2018, 7(3): 335–345. doi: 10.12000/JR18007
    [27]
    冯珂. InSAR复图像配准方法研究[D]. [硕士论文], 长沙理工大学, 2013.

    FENG Ke. InSAR image registration method[D]. [Master dissertation], Changsha University of Science & Technology, 2013.
    [28]
    FANG Dongsheng, LV Xiaolei, YUN Ye, et al. An InSAR fine registration algorithm using uniform tie points based on voronoi diagram[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1403–1407. doi: 10.1109/LGRS.2017.2715189
    [29]
    CHEN Jiankun, QIU Xiaolan, DING Chibiao, et al. CVCMFF Net: Complex-valued convolutional and multifeature fusion network for building semantic segmentation of InSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5205714. doi: 10.1109/TGRS.2021.3068124
    [30]
    王伟, 许华荣, 魏含玉, 等. 面向阵列InSAR点云规则化的渐近式建筑立面检测[J]. 雷达学报, 2022, 11(1): 144–156. doi: 10.12000/JR21177

    WANG Wei, XU Huarong, WEI Hanyu, et al. Progressive building facade detection for regularizing array InSAR point clouds[J]. Journal of Radars, 2022, 11(1): 144–156. doi: 10.12000/JR21177
    [31]
    胡占义. 合成孔径雷达三维成像中的视觉语义浅析[J]. 雷达学报, 2021, 11(1): 20–26. doi: 10.12000/JR21149

    HU Zhanyi. A note on visual semantics in SAR 3D imaging[J]. Journal of Radars, 2021, 11(1): 20–26. doi: 10.12000/JR21149
    [32]
    LI Xiaowan, ZHANG Fubo, LI Yanlei, et al. An elevation ambiguity resolution method based on segmentation and reorganization of TomoSAR point cloud in 3D mountain reconstruction[J]. Remote Sensing, 2021, 13(24): 5118. doi: 10.3390/rs13245118
    [33]
    ZHANG Fubo, LIANG Xingdong, CHENG Ruichang, et al. Building corner reflection in MIMO SAR tomography and compressive sensing-based corner reflection suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(3): 446–450. doi: 10.1109/LGRS.2019.2926301
  • Relative Articles

    [1]YANG Xiaopeng, MA Zhongjie, ZHONG Shichao, QU Xiaodong, ZENG Xiaolu. Trajectory Planning Method for UAV-through-the-wall 3D SAR Based on a Genetic Algorithm[J]. Journal of Radars, 2024, 13(4): 731-746. doi: 10.12000/JR24068
    [2]LIN Yuqing, QIU Xiaolan, PENG Lingxiao, LI Hang, DING Chibiao. Non-line-of-sight Target Relocation by Multipath Model in SAR 3D Urban Area Imaging[J]. Journal of Radars, 2024, 13(4): 777-790. doi: 10.12000/JR24057
    [3]HUANG Zhongling, WU Chong, YAO Xiwen, WANG Lipeng, HAN Junwei. Physically Explainable Intelligent Perception and Application of SAR Target Characteristics Based on Time-frequency Analysis[J]. Journal of Radars, 2024, 13(2): 331-344. doi: 10.12000/JR23191
    [4]XU Feng, JIN Yaqiu. Microwave Vision and Intelligent Perception of Radar Imagery[J]. Journal of Radars, 2024, 13(2): 285-306. doi: 10.12000/JR23225
    [5]QIU Xiaolan, LUO Yitong, SONG Shujie, PENG Lingxiao, CHENG Yao, YAN Qiancheng, SHANGGUAN Songtao, JIAO Zekun, ZHANG Zhe, DING Chibiao. Microwave Vision Three-dimensional SAR Experimental System and Full-polarimetric Data Processing Method[J]. Journal of Radars, 2024, 13(5): 941-954. doi: 10.12000/JR24137
    [6]REN Zishuai, ZHANG Zhao, GAO Yuxin, GUO Rui. Three-dimensional Imaging of Tomographic SAR Based on Adaptive Elevation Constraint[J]. Journal of Radars, 2023, 12(5): 1056-1068. doi: 10.12000/JR23111
    [7]HU Zhanyi. A Note on Visual Semantics in SAR 3D Imaging[J]. Journal of Radars, 2022, 11(1): 20-26. doi: 10.12000/JR21149
    [8]LIN Yun, ZHANG Lin, WEI Lideng, ZHANG Hanqing, FENG Shanshan, WANG Yanping, HONG Wen. Research on Full-aspect Three-dimensional SAR Imaging Method for Complex Structural Facilities without Prior Model[J]. Journal of Radars, 2022, 11(5): 909-919. doi: 10.12000/JR22148
    [9]LI Yueli, LI Zesen, WANG Jian, LIU Ke, ZHOU Zhimin. Modification and Compensation of the Line-of-Sight Motion Error for Multirotor UAV SAR[J]. Journal of Radars, 2022, 11(6): 1061-1080. doi: 10.12000/JR22082
    [10]GAO Ming, QIU Xiaolan, MENG Dadi, HUANG Lijia, DING Chibiao. Geolocation Error Transfer Model and Trajectory Calibration Method for Airborne SAR Considering Motion Compensation Residual Error[J]. Journal of Radars, 2021, 10(4): 646-655. doi: 10.12000/JR21018
    [11]QIU Xiaolan, JIAO Zekun, PENG Lingxiao, CHEN Jiankun, GUO Jiayi, ZHOU Liangjiang, CHEN Longyong, DING Chibiao, XU Feng, DONG Qiulei, LYU Shouye. SARMV3D-1.0: Synthetic Aperture Radar Microwave Vision 3D Imaging Dataset[J]. Journal of Radars, 2021, 10(4): 485-498. doi: 10.12000/JR21112
    [12]DING Chibiao, QIU Xiaolan, XU Feng, LIANG Xingdong, JIAO Zekun, ZHANG Fubo. Synthetic Aperture Radar Three-dimensional Imaging——From TomoSAR and Array InSAR to Microwave Vision(in English)[J]. Journal of Radars, 2019, 8(6): 693-709. doi: 10.12000/JR19090
    [13]CHEN Xiaoxiang, XING Mengdao. An Ultra-high-resolution Microwave Photonic-based SAR Image Method Based on Space-variant Motion Error Analysis[J]. Journal of Radars, 2019, 8(2): 205-214. doi: 10.12000/JR18121
    [14]Hong Wen, Wang Yanping, Lin Yun, Tan Weixian, Wu Yirong. Research Progress on Three-dimensional SAR Imaging Techniques[J]. Journal of Radars, 2018, 7(6): 633-654. doi: 10.12000/JR18109
    [15]Li Hang, Liang Xingdong, Zhang Fubo, Wu Yirong. 3D Imaging for Array InSAR Based on Gaussian Mixture Model Clustering[J]. Journal of Radars, 2017, 6(6): 630-639. doi: 10.12000/JR17020
    [16]Wu Min, Zhang Lei, Liu Songyang, Xing Mengdao. OFDM-ISAR Sparse Optimization Imaging and Motion Compensation[J]. Journal of Radars, 2016, 5(1): 72-81. doi: 10.12000/JR16017
    [17]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [18]Zhang Ying-jie, Wang Yan-ping, Tan Wei-xian, Hong Wen. Research on Motion Compensation for Airborne Forward Looking Synthetic Aperture Radar with Linear Array Antennas[J]. Journal of Radars, 2013, 2(2): 168-179. doi: 10.3724/SP.J.1300.2012.20067
    [19]Li Yin-wei, Wei Li-deng, Xiang Mao-sheng. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR[J]. Journal of Radars, 2013, 2(4): 492-498. doi: 10.3724/SP.J.1300.2013.13040
    [20]Hu Ji-wei, Hong Jun, Ming Feng, Li Liang. Model-based CP Selection Method for Calibration of Airborne InSAR with Sparse GCPs[J]. Journal of Radars, 2012, 1(4): 441-445. doi: 10.3724/SP.J.1300.2012.20090
  • Cited by

    Periodical cited type(5)

    1. 张帆,陆圣涛,项德良,袁新哲. 一种改进的高分辨率SAR图像超像素CFAR舰船检测算法. 雷达学报. 2023(01): 120-139 . 本站查看
    2. 李怀巷,卓智海. 基于Grubbs准则的改进的2D CA-CFAR. 北京信息科技大学学报(自然科学版). 2023(01): 70-75 .
    3. 罗嘉豪,殷君君,杨健. 基于超像素与稀疏重构显著性的极化SAR舰船检测. 工程科学学报. 2023(10): 1684-1692 .
    4. 徐正,巩光众,罗运华,李广德. 约束优化的空间变迹算法的旁瓣抑制应用. 系统工程与电子技术. 2022(11): 3298-3304 .
    5. 崔兴超,粟毅,陈思伟. 融合极化旋转域特征和超像素技术的极化SAR舰船检测. 雷达学报. 2021(01): 35-48 . 本站查看

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4176) PDF downloads(671) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint