Liang Fu-lai, Li Zhao, An Qiang, Liu Miao, Wang Jian-qi. Suppression of Time-domain Jitter of Impulse Radio Ultra-wide Band Radar[J]. Journal of Radars, 2015, 4(4): 439-444. doi: 10.12000/JR14115
Citation: Hong Wen, Wang Yanping, Lin Yun, Tan Weixian, Wu Yirong. Research Progress on Three-dimensional SAR Imaging Techniques[J]. Journal of Radars, 2018, 7(6): 633-654. doi: 10.12000/JR18109

Research Progress on Three-dimensional SAR Imaging Techniques

DOI: 10.12000/JR18109
Funds:  The National Natural Science Foundation of China (61431018, 61860206013, 61571421)
  • Received Date: 2018-12-05
  • Rev Recd Date: 2018-12-21
  • Publish Date: 2018-12-28
  • Conventional Synthetic Aperture Radar (SAR) moves along a straight line and forms a linear synthetic apertures. It can only obtain the two-dimensional (2-D) image of illuminated scene that is the projection of the three-dimensional (3-D) real scene onto a slant plane. The slant plane 2-D SAR image, however, suffers from layover and foreshortening effects. 3-D SAR imaging enables 3-D resolving capability by extending the acquisition of frequency information from 2-D to 3-D. It can obtain the 3-D distribution of scattering centers; therefore, it solves the geometric deformation problems of layover and foreshortening. 3-D SAR imaging has become a trending topic in research on SAR techniques worldwide. In this paper, we first introduced the concept of 3-D SAR imaging and several typical 3-D SAR imaging modes. Furthermore, it provides a discussion on research progress at home and abroad, particularly focusing on the progress of our research team. Finally, future research prospects are presented.

     

  • [1]
    Knaell K. Three-dimensional SAR from curvilinear apertures[C]. Proceedings of SPIE 2230, Algorithms for Synthetic Aperture Radar Imagery, Orlando, FL, USA, 1994.
    [2]
    Soumekh M. Reconnaissance with slant plane circular SAR imaging[J]. IEEE Transactions on Image Processing, 1996, 5(8): 1252–1265. DOI: 10.1109/83.506760
    [3]
    Bryant M L, Gostin L L, and Soumekh M. 3-D E-CSAR imaging of a T-72 tank and synthesis of its SAR reconstructions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 211–227. DOI: 10.1109/TAES.2003.1188905
    [4]
    Fortuny J. Efficient algorithms for three-dimensional near-field synthetic aperture radar imaging[D].[Ph.D. dissertation], University of Karslruhe, 2001.
    [5]
    Fortuny J and Lopez-Sanchez J M. Extension of the 3-D range migration algorithm to cylindrical and spherical scanning geometries[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(10): 1434–1444. DOI: 10.1109/8.954932
    [6]
    Reigber A and Moreira A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. DOI: 10.1109/36.868873
    [7]
    谭维贤. 合成孔径雷达三维成像理论与方法研究[D]. [博士论文], 中国科学院电子学研究所, 2009.

    Tan Wei-xian. Study on theory and algorithms for three-dimensional synthetic aperture radar imaging[D]. [Ph.D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2009.
    [8]
    洪文, 丁赤飚, 王彦平, 等. 确定微波三维成像中相位中心时空分布的方法[P]. 中国, CN201310699025, 2014.

    Hong Wen, Ding Chi-biao, Wang Yan-ping, et al.. Method for confirming space-time distribution of phase center in microwave three-dimensional imaging[P]. CN, CN201310699025, 2014.
    [9]
    Chan T K, Kuga Y, and Ishimaru A. Experimental studies on circular SAR imaging in clutter using angular correlation function technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2192–2197. DOI: 10.1109/36.789616
    [10]
    She Z, Gray D A, Bogner R E, et al.. Three-dimensional SAR imaging via multiple pass processing[C]. Proceedings of IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999, 5: 2389–2391. DOI: 10.1109/IGARSS.1999.771519.
    [11]
    Fornaro G, Serafino F, and Soldovieri F. Three-dimensional focusing with multipass SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3): 507–517. DOI: 10.1109/TGRS.2003.809934
    [12]
    Fornaro G and Serafino F. Imaging of single and double scatterers in urban areas via SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3497–3505. DOI: 10.1109/TGRS.2006.881748
    [13]
    Zhu X X and Bamler R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247–258. DOI: 10.1109/TGRS.2011.2160183
    [14]
    Budillon A, Evangelista A, and Schirinzi G. Three-dimensional SAR focusing from multipass signals using compressive sampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 488–499. DOI: 10.1109/TGRS.2010.2054099
    [15]
    Aguilera E, Nannini M, and Reigber A. Wavelet-based compressed sensing for SAR tomography of forested areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(12): 5283–5295. DOI: 10.1109/TGRS.2012.2231081
    [16]
    Aguilera E, Nannini M, and Reigber A. Multisignal compressed sensing for polarimetric SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 871–875. DOI: 10.1109/LGRS.2012.2185482
    [17]
    Gierull C H. On a concept for an airborne downward-looking imaging radar[J]. International Journal of Electronics and Communications, 1999, 53(6): 295–304.
    [18]
    Giret R, Jeuland H, and Enert P. A study of a 3D-SAR concept for a millimeter wave imaging radar onboard an UAV[C]. Proceedings of the 1st European Radar Conference, Amsterdam, The Netherlands, 2004: 201–204.
    [19]
    Nouvel J, Jeuland H, Bonin G, et al.. A Ka band imaging radar: DRIVE on board ONERA motorglider[C]. Proceedings of 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 134–136. DOI: 10.1109/IGARSS.2006.39.
    [20]
    Klare J, Weiß M, Peters O, et al.. ARTINO: A new high resolution 3D imaging radar system on an autonomous airborne platform[C]. Proceedings of 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 3842–3845.
    [21]
    Palm S, Oriot H M, and Cantalloube H M. Radargrammetric DEM extraction over urban area using circular SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4720–4725. DOI: 10.1109/TGRS.2012.2191414
    [22]
    Ponce O, Prats P, Rodriguez-Cassola M, et al.. Processing of circular SAR trajectories with fast factorized back-projection[C]. Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 3692–3695.
    [23]
    Ponce O, Prats-Iraola P, Scheiber R, et al. First airborne demonstration of holographic SAR tomography with fully polarimetric multicircular acquisitions at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6170–6196. DOI: 10.1109/TGRS.2016.2582959
    [24]
    王斌. 多基线SAR三维成像的参数化模型和方法研究[D]. [博士论文], 中国科学院研究生院, 2010.

    Wang Bin. Parametric algorithms of multi-baseline synthetic aperture radar[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2010.
    [25]
    Wang B, Wang Y P, Hong W, et al. Studies on MB-SAR 3D imaging algorithm using Yule-walker method[J]. Science China Information Sciences, 2010, 53(9): 1848–1859. DOI: 10.1007/s11432-010-4040-7
    [26]
    毕辉. 基于稀疏信号处理的SAR/TomoSAR成像方法研究[D]. [博士论文], 中国科学院大学, 2017.

    Bi Hui. Study on sparse signal processing based SAR/TomoSAR imaging methods[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2017.
    [27]
    Bi H, Zhang B C, and Hong W. Matrix completion-based distributed compressive sensing for polarimetric SAR tomography[J]. Science China Information Sciences, 2015, 58(11): 1–3. DOI: 10.1007/S11432-015-5395-6
    [28]
    Bi H, Zhang B C, and Hong W. Lq regularization-based unobserved baselines’ data estimation method for tomographic synthetic aperture radar inversion[J]. Journal of Applied Remote Sensing, 2016, 10(3): 035014. DOI: 10.1117/1.JRS.10.035014
    [29]
    Bi H, Liu J G, Zhang B C, et al. Baseline distribution optimization and missing data completion in wavelet-based CS-TomoSAR[J]. Science China Information Sciences, 2018, 61(4): 042302. DOI: 10.1007/s11432-016-9068-y
    [30]
    彭学明. 机载下视稀疏阵列3D SAR分布式大场景回波模拟与成像处理算法研究[D]. [博士论文], 中国科学院大学, 2014.

    Peng Xue-ming. Airborne downward looking sparse linear array three dimensional synthetic aperture radar distriubted large imaging scene echo simualtion and imaging algorithm research[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2014.
    [31]
    Peng X M, Hong W, Wang Y P, et al. Polar format imaging algorithm with wave-front curvature phase error compensation for airborne DLSLA three-dimensional SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1036–1040. DOI: 10.1109/LGRS.2013.2282335
    [32]
    Peng X M, Wang Y P, Hong W, et al. Autonomous Narigation airborne forward looking SAR high precision pseudopolar format imaging with ourlapped sub-aperture algorithm[J]. Remote Sensing, 2013, 5(11).
    [33]
    Peng X M, Wang Y P, Hong W, et al. Airborne downward looking sparse linear array 3-D SAR heterogeneous parallel simulation[J]. Remote Sensing, 2013, 5(10): 5304–5329. DOI: 10.3390/rs5105304
    [34]
    韩阔业. 阵列天线下视3D SAR多通道幅相误差校正成像方法研究[D]. [硕士论文], 中国科学院研究生院, 2011.

    Han Kuo-ye. Study on multi-channel amplitude-phase errors calibration and imaging methods of downward-looking 3D-SAR based on array antennas[D]. [Master dissertation], University of Chinese Academy of Sciences, 2011.
    [35]
    Han K Y, Wang Y P, Tan W X, et al. Efficient pseudopolar format algorithm for down-looking linear-array SAR 3-D imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 572–576. DOI: 10.1109/LGRS.2014.2351792
    [36]
    Han K Y, Wang Y P, Chang X K, et al. Generalized pseudopolar format algorithm for radar imaging with highly suboptimal aperture length[J]. Science China Information Sciences, 2015, 58(4): 1–15. DOI: 10.1007/S11432-014-5224-3
    [37]
    鲍慊. 三维合成孔径雷达稀疏成像方法研究[D]. [博士论文], 中国科学院大学, 2017.

    Bao Qian. Study on sparse imaging algorithms for three-dimensional synthetic aperture radar[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2017.
    [38]
    Bao Q, Peng X M, Wang Z R, et al. DLSLA 3-D SAR imaging based on reweighted gridless sparse recovery method[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 841–845. DOI: 10.1109/LGRS.2016.2550057
    [39]
    Bao Q, Peng X M, Lin Y, et al. Suboptimal aperture radar imaging by combination of pseudo-polar formatting and gridless sparse recovery method[J]. Electronics Letters, 2016, 52(9): 765–766. DOI: 10.1049/el.2016.0234
    [40]
    Bao Q, Jiang C L, Lin Y, et al. Measurement matrix optimization and mismatch problem compensation for DLSLA 3-D SAR cross-track reconstruction[J]. Sensors, 2016, 16(8): 1333. DOI: 10.3390/s16081333
    [41]
    Bao Q, Peng X M, Wang Y P, et al. Downward looking sparse linear array 3D SAR imaging algorithm based on back-projection and convex optimization[J]. Journal of Electronics(China) , 2014, 31(4): 298–309. DOI: 10.1007/s11767-014-4095-5
    [42]
    杨晓琳. 线阵成像雷达系统设计及幅相误差一致性校正方法研究[D]. [博士论文], 中国科学院研究生院, 2014.

    Yang Xiao-lin. Research on system design and amplitude/phase errors correction for linear array imaging radar[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2014.
    [43]
    杨晓琳, 谭维贤, 乞耀龙, 等. 基于单特显点目标回波的阵列3D SAR幅相误差一致性校正方法研究[J]. 雷达学报, 2014, 3(4): 409–418. DOI: 10.3724/SP.J.1300.2014.14037

    Yang Xiao-lin, Tan Wei-xian, Qi Yao-long, et al. Amplitude and phase errors correction for array 3D SAR system based on single prominent point like target echo data[J]. Journal of Radars, 2014, 3(4): 409–418. DOI: 10.3724/SP.J.1300.2014.14037
    [44]
    丁振宇, 谭维贤, 王彦平, 等. 基于波数域子孔径的机载三维SAR偏航角运动误差补偿[J]. 雷达学报, 2015, 4(4): 467–473. DOI: 10.12000/JR15016

    Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, et al. Yaw angle error compensation for airborne 3-D SAR based on wavenumber-domain subblock[J]. Journal of Radars, 2015, 4(4): 467–473. DOI: 10.12000/JR15016
    [45]
    丁振宇. 机载下视觉阵列三维SAR运动补偿方法研究[D]. [博士论文], 中国科学院大学, 2015.

    Ding Zhen-yu. Research on airborne downward looking array three dimensional synthetic aperture radar motion compensation method[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2015.
    [46]
    林赟. 圆迹合成孔径雷达成像算法研究[D]. [博士论文], 中国科学院研究生院, 2011.

    Lin Yun. Study on algorithms for circular synthetic aperture radar imaging[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2011.
    [47]
    林赟, 谭维贤, 洪文, 等. 圆迹SAR极坐标格式算法研究[J]. 电子与信息学报, 2010, 32(12): 2802–2807. DOI: 10.3724/SP.J.1146.2010.00003

    Lin Yun, Tan Wei-xian, Hong Wen, et al. Polar format algorithm for circular synthetic aperture radar[J]. Journal of Electronics&Information Technology, 2010, 32(12): 2802–2807. DOI: 10.3724/SP.J.1146.2010.00003
    [48]
    Lin Y, Hong W, Tan W X, et al. Extension of range migration algorithm to squint circular SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 651–655. DOI: 10.1109/LGRS.2010.2098843
    [49]
    洪文, 林赟, 谭维贤, 等. 地球同步轨道圆迹SAR研究[J]. 雷达学报, 2015, 4(3): 241–253. DOI: 10.12000/JR15062

    Hong Wen, Lin Yun, Tan Wei-xian, et al. Study on geosynchronous circular SAR[J]. Journal of Radars, 2015, 4(3): 241–253. DOI: 10.12000/JR15062
    [50]
    刘启. 地球同步轨道圆迹SAR成像方法研究[D]. [博士论文], 中国科学院电子学研究所, 2012: 1–18.

    Liu Qi. Investigation on the imaging methods for geosynchronous circular SAR[D]. [Ph.D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2012: 1–18.
    [51]
    Liu Q, Hong W, Tan W X, et al. An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging[J]. Progress in Electromagnetics Research, 2011, 119: 155–170. DOI: 10.2528/PIER11060503
    [52]
    洪文. 圆迹SAR成像技术研究进展[J]. 雷达学报, 2012, 1(2): 124–135. DOI: 10.3724/SP.J.1300.2012.20046

    Hong Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124–135. DOI: 10.3724/SP.J.1300.2012.20046
    [53]
    刘婷. 基于DEM提取技术的机载圆迹SAR三维成像方法研究[D]. [硕士论文], 中国科学院大学, 中国科学院研究生院, 2012.

    Liu Ting. Three-dimensional imaging Based on the technique of DEM extraction in Airborne Circular SAR[D]. [Master dissertation], University of Chinese Academy of Sciences, 2012.
    [54]
    Lin Y, Hong W, Tan W X, et al. Interferometric circular SAR method for three-dimensional imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1026–1030. DOI: 10.1109/LGRS.2011.2150732
    [55]
    侯丽英. 干涉圆迹SAR的典型目标全方位三维重建方法研究[D]. [硕士论文], 中国科学院大学, 2016.

    Hou Li-ying. Interferometric circular SAR all-around 3D reconstruction method study on typical target[D]. [Master dissertation], University of Chinese Academy of Sciences, 2016.
    [56]
    侯丽英, 林赟, 洪文. 干涉圆迹SAR的目标三维重建方法研究[J]. 雷达学报, 2016, 5(5): 538–547. DOI: 10.12000/JR16009

    Hou Li-ying, Lin Yun, and Hong Wen. Three-dimensional reconstruction method study based on interferometric circular SAR[J]. Journal of Radars, 2016, 5(5): 538–547. DOI: 10.12000/JR16009
    [57]
    Bao Q, Lin Y, Hong W, et al. Holographic SAR tomography image reconstruction by combination of adaptive imaging and sparse Bayesian inference[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1248–1252. DOI: 10.1109/LGRS.2017.2704601
    [58]
    乞耀龙. 近景微波三维成像模型与方法研究[D]. [博士论文], 中国科学院研究生院, 2012.

    Qi Yao-long. Study on imaging model and algorithms for near range three-dimensional microwave imaging[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2012.
  • Relative Articles

    [1]TANG Aimin, WANG Shuhan, QU Wenze. Reference Signal Design in OFDM ISAC for Long-range and High-speed UAV Detection[J]. Journal of Radars. doi: 10.12000/JR24240
    [2]LIU Fan, LU Shihang, CHEN Zihao. MIMO-ISAC Precoding Design Toward Random Signals[J]. Journal of Radars. doi: 10.12000/JR25019
    [3]HE Zhuoyuan, CHEN Shengyao, ZHU Han, XI Feng, LI Hongtao, LIU Zhong. Transmit Waveform Design for Symbol-Level Precoding-based One-Bit Dual-Functional Radar-Communication[J]. Journal of Radars. doi: 10.12000/JR24217
    [4]WANG Xiaoge, LI Binbin, CHEN Hui, LIU Weijian, ZHU Yongzhe, NI Mengyu. Anti-ISRJ Method Based on Intrapulse Frequency-coded Joint Frequency Modulation Slope Agile Radar Waveform[J]. Journal of Radars, 2024, 13(5): 1019-1036. doi: 10.12000/JR24046
    [5]LIU Yan, WAN Xianrong, YI Jianxin. OFDM Waveform Design for Joint Radar-communication Based on Data Distortion[J]. Journal of Radars, 2024, 13(1): 160-173. doi: 10.12000/JR23205
    [6]YANG Jing, YU Xianxiang, SHA Minghui, CUI Guolong, KONG Lingjiang. Dual Function Radar and Communication Signal Matrix Design Method for MIMO System[J]. Journal of Radars, 2023, 12(2): 262-274. doi: 10.12000/JR22087
    [7]YU Xianxiang, YAO Xue, YANG Jing, LU Jun, CUI Guolong, KONG Lingjiang. Radar-centric DFRC Signal Design: Overview and Future Research Avenues[J]. Journal of Radars, 2023, 12(2): 247-261. doi: 10.12000/JR23015
    [8]LIU Liu, LIANG Xingdong, LI Yanlei, ZENG Zhiyuan, TANG Haibo. A Novel Joint Radar-communication Waveform Design Method Based on Distributed Aperture[J]. Journal of Radars, 2023, 12(2): 297-311. doi: 10.12000/JR23019
    [9]LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064
    [10]WU Wenjun, TANG Bo, TANG Jun, HU Yuankui. Waveform Design for Dual-function Radar-communication Systems in Clutter[J]. Journal of Radars, 2022, 11(4): 570-580. doi: 10.12000/JR22105
    [11]LIU Zhixing, DU Siyu, WU Yaojun, SHA Minghui, XING Mengdao, QUAN Yinghui. Anti-interrupted Sampling Repeater Jamming Method for Interpulse and Intrapulse Frequency-agile Radar[J]. Journal of Radars, 2022, 11(2): 301-312. doi: 10.12000/JR22001
    [12]MA Dingyou, LIU Xiang, HUANG Tianyao, LIU Yimin. Joint Radar and Communications: Shared Waveform Designs and Performance Bounds[J]. Journal of Radars, 2022, 11(2): 198-212. doi: 10.12000/JR21146
    [13]LIU Fan, YUAN Weijie, YUAN Jinhong, ZHANG J. Andrew, FEI Zesong, ZHOU Jianming. Radar-communication Spectrum Sharing and Integration: Overview and Prospect[J]. Journal of Radars, 2021, 10(3): 467-484. doi: 10.12000/JR20113
    [14]YU Lei, HE Feng, DONG Zhen, SU Yi, ZHANG Yongsheng, WU Manqing. A Waveform Design Method Based on Nonlinear Frequency Modulation and Space-coding for Coherent Frequency Diverse Array Radar[J]. Journal of Radars, 2021, 10(6): 822-832. doi: 10.12000/JR21008
    [15]YANG Yue, YE Xingwei, ZHANG Fangzheng, PAN Shilong. Broadband LFM Radar Imaging System Based on Microwave Photonic I/Q De-chirping[J]. Journal of Radars, 2019, 8(2): 224-231. doi: 10.12000/JR19002
    [16]Zhu Kehong, Wang Jie, Liang Xingdong, Wu Yirong. Filter Bank Multicarrier Waveform Used for Integrated SAR and Communication Systems[J]. Journal of Radars, 2018, 7(5): 602-612. doi: 10.12000/JR18038
    [17]Chen Fangxiang, Yi Wei, Zhou Tao, Kong Lingjiang. Passive Direct Location Determination for Multiple Sources Based on FRFT[J]. Journal of Radars, 2018, 7(4): 523-530. doi: 10.12000/JR18027
    [18]Li Zi-qi, Mei Jin-jie, Hu Deng-oeng, Shen Xu-chi, Li Xiao-bai. Peak-to-Average Power Ratio Reduction for Integration of Radar and Communication Systems Based on OFDM Signals with Block Golay Coding[J]. Journal of Radars, 2014, 3(5): 548-555. doi: 10.3724/SP.J.1300.2014.14059
    [19]Shao Qi-hong, Wan Xian-rong, Zhang De-lei, Zhao Zhi-xin, Ke Heng-yu. Experimental Study on Shortwave Communication and OTHR Integrated System Based on OFDM Waveform[J]. Journal of Radars, 2012, 1(4): 370-379. doi: 10.3724/SP.J.1300.2012.20089
    [20]Huang Chong-peng, Wang Jian, Xu Bao-guo. The Impact of Sidelobe Suppression in Shift-frequency Jamming against LFM[J]. Journal of Radars, 2012, 1(3): 270-276. doi: 10.3724/SP.J.1300.2012.20028
  • Cited by

    Periodical cited type(3)

    1. 罗汝,赵凌君,何奇山,计科峰,匡纲要. SAR图像飞机目标智能检测识别技术研究进展与展望. 雷达学报. 2024(02): 307-330 . 本站查看
    2. 何奇山,赵凌君,计科峰,匡纲要. 面向SAR目标识别成像参数敏感性的深度学习技术研究进展. 电子与信息学报. 2024(10): 3827-3848 .
    3. 顾丹丹,廖意,王晓冰. 雷达目标特性知识引导的智能识别技术进展与思考. 制导与引信. 2022(04): 57-64 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(8133) PDF downloads(1113) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint