Processing math: 100%
YU Xianxiang, YAO Xue, YANG Jing, et al. Radar-centric DFRC signal design: Overview and future research avenues[J]. Journal of Radars, 2023, 12(2): 247–261. doi: 10.12000/JR23015
Citation: YU Xianxiang, YAO Xue, YANG Jing, et al. Radar-centric DFRC signal design: Overview and future research avenues[J]. Journal of Radars, 2023, 12(2): 247–261. doi: 10.12000/JR23015

Radar-centric DFRC Signal Design: Overview and Future Research Avenues

DOI: 10.12000/JR23015
Funds:  The National Natural Science Foundation of China (62101097, 62271126)
More Information
  • Corresponding author: CUI Guolong, cuiguolong@uestc.edu.cn
  • Received Date: 2023-02-05
  • Rev Recd Date: 2023-04-20
  • Available Online: 2023-04-24
  • Publish Date: 2023-04-26
  • During the confrontation of electronic systems, it is challenging to deal with the enemy’s comprehensive electronic weapons by simply combining electronic equipment, such as radar, communication, surveillance, and jammers. Hence, to meet the requirements of a modern war environment, the comprehensive integration of various electronic equipment is an inevitable trend. Radar and communication equipment, which are viewed as forward eyes and ears, are very similar in hardware structure and signal processing methods. In this regard, the organic union of these two is plausible. As a result, the Dual-Function Radar and Communication (DFRC) system has received a lot of attention, where integrated waveform design is one of the key scientific issues. The DFRC waveform primarily refers to the transmit waveform that realizes radar detection and information communication functions simultaneously in multiple dimensions, such as space, time, and frequency domains, through electromagnetic spectrum sharing. This paper provides a fundamental review of the radar-centric DFRC waveform design. Initially, this paper presents a brief overview of the radar-centric DFRC system’s application scenarios. Then, the progress of radar-centric integrated waveform design research is discussed. Finally, some closing remarks and potential future research directions are provided.

     

  • [1]
    刘永军, 廖桂生, 李海川, 等. 电磁空间分布式一体化波形设计与信息获取[J]. 中国科学基金, 2021, 35(5): 701–707. doi: 10.16262/j.cnki.1000-8217.2021.05.005

    LIU Yongjun, LIAO Guisheng, LI Haichuan, et al. Distributed integrated waveform design and information acquisition in electromagnetic space[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(5): 701–707. doi: 10.16262/j.cnki.1000-8217.2021.05.005
    [2]
    HUGHES P K and CHOE J Y. Overview of advanced multifunction RF system (AMRFS)[C]. 2000 IEEE International Conference on Phased Array Systems and Technology, Dana Point, USA, 2000: 21–24.
    [3]
    TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009–1020. doi: 10.1109/TMTT.2005.843485
    [4]
    MOLNAR J A, CORRETJER I, and TAVIK G. Integrated topside-integration of narrowband and wideband array antennas for shipboard communications[C]. 2011 Military Communications Conference, Baltimore, USA, 2011: 1802–1807.
    [5]
    WETZEL L B. Sea Clutter[M]. SKOLNIK M I. Radar Handbook. 2nd ed. New York: McGraw-Hill, 1990: 13.23–13.24.
    [6]
    JENSEN D. Radar transmitting data[EB/OL]. https://www.aviationtoday.com/2006/08/01/radar-transmitting-data/, 2006.
    [7]
    BROUSSEAU R, SANDERS A, HUFFMAN D R, et al. An open system architecture for integrated RF systems[C]. 16th DASC. AIAA/IEEE Digital Avionics Systems Conference. Reflections to the Future, Irvine, USA, 1997: 5.1–1. doi: 10.1109/DASC.1997.635082.
    [8]
    WU Kai, ZHANG J A, HUANG Xiaojing, et al. Waveform design and accurate channel estimation for frequency-hopping MIMO radar-based communications[J]. IEEE Transactions on Communications, 2021, 69(2): 1244–1258. doi: 10.1109/TCOMM.2020.3034357
    [9]
    WU Kai, ZHANG J A, HUANG Xiaojing, et al. Reliable frequency-hopping MIMO radar-based communications with multi-antenna receiver[J]. IEEE Transactions on Communications, 2021, 69(8): 5502–5513. doi: 10.1109/TCOMM.2021.3079270
    [10]
    LIU Fan, MASOUROS C, LI Ang, et al. MU-MIMO communications with MIMO radar: From co-existence to joint transmission[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755–2770. doi: 10.1109/TWC.2018.2803045
    [11]
    LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648
    [12]
    LIU Fan, MASOUROS C, and GRIFFITHS H. Dual-functional radar-communication waveform design under constant-modulus and orthogonality constraints[C]. 2019 Sensor Signal Processing for Defence Conference, Brighton, UK, 2019: 1–5.
    [13]
    LIU Fan, MASOUROS C, RATNARAJAH T, et al. On range sidelobe reduction for dual-functional radar-communication waveforms[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1572–1576. doi: 10.1109/LWC.2020.2997959
    [14]
    TSINOS C G, ARORA A, CHATZINOTAS S, et al. Joint transmit waveform and receive filter design for dual-function radar-communication systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1378–1392. doi: 10.1109/JSTSP.2021.3112295
    [15]
    LIU Rang, LI Ming, LIU Qian, et al. Joint waveform and filter designs for STAP-SLP-based MIMO-DFRC systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1918–1931. doi: 10.1109/JSAC.2022.3155501
    [16]
    刘永军, 廖桂生, 唐皓, 等. FSK-FMCW雷达通信一体化信号设计与处理方法研究[J]. 信号处理, 2022, 38(11): 2265–2275. doi: 10.16798/j.issn.1003-0530.2022.11.004

    LIU Yongjun, LIAO Guisheng, TANG Hao, et al. Integrated FSK-FMCW radar and communication signal design and processing method[J]. Journal of Signal Processing, 2022, 38(11): 2265–2275. doi: 10.16798/j.issn.1003-0530.2022.11.004
    [17]
    ZHAO Na, WANG Yunlong, ZHANG Zhibo, et al. Joint transmit and receive beamforming design for integrated sensing and communication[J]. IEEE Communications Letters, 2022, 26(3): 662–666. doi: 10.1109/LCOMM.2021.3140093
    [18]
    STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110
    [19]
    SEN S. PAPR-constrained pareto-optimal waveform design for OFDM-STAP radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(6): 3658–3669.
    [20]
    HUANG Yixuan, HU Su, MA Shiyong, et al. Constant envelope OFDM RadCom fusion system[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018: 104. doi: 10.1186/s13638-018-1105-6
    [21]
    LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Design of integrated radar and communication system based on MIMO-OFDM waveform[J]. Journal of Systems Engineering and Electronics, 2017, 28(4): 669–680. doi: 10.21629/JSEE.2017.04.06
    [22]
    LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Joint range and angle estimation for an integrated system combining MIMO radar with OFDM communication[J]. Multidimensional Systems and Signal Processing, 2019, 30(2): 661–687. doi: 10.1007/s11045-018-0576-2
    [23]
    LIU Yongjun, LIAO Guisheng, CHEN Yufeng, et al. Super-resolution range and velocity estimations with OFDM integrated radar and communications waveform[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11659–11672. doi: 10.1109/TVT.2020.3016470
    [24]
    LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Robust OFDM integrated radar and communications waveform design based on information theory[J]. Signal Processing, 2019, 162: 317–329. doi: 10.1016/j.sigpro.2019.05.001
    [25]
    LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Multiobjective optimal waveform design for OFDM integrated radar and communication systems[J]. Signal Processing, 2017, 141: 331–342. doi: 10.1016/j.sigpro.2017.06.026
    [26]
    LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890
    [27]
    刘永军, 廖桂生, 杨志伟. 基于OFDM的雷达通信一体化波形模糊函数分析[J]. 系统工程与电子技术, 2016, 38(9): 2008–2018. doi: 10.3969/j.issn.1001-506X.2016.09.07

    LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Ambiguity function analysis of integrated radar and communication waveform based on OFDM[J]. Systems Engineering and Electronics, 2016, 38(9): 2008–2018. doi: 10.3969/j.issn.1001-506X.2016.09.07
    [28]
    刘永军, 廖桂生, 杨志伟, 等. 一种超分辨OFDM雷达通信一体化设计方法[J]. 电子与信息学报, 2016, 38(2): 425–433. doi: 10.11999/JEIT150320

    LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. A super-resolution design method for integration of OFDM radar and communication[J]. Journal of Electronics &Information Technology, 2016, 38(2): 425–433. doi: 10.11999/JEIT150320
    [29]
    刘永军, 廖桂生, 杨志伟. OFDM雷达通信一体化波形相参积累研究[J]. 信号处理, 2017, 33(3): 253–259. doi: 10.16798/j.issn.1003-0530.2017.03.001

    LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. A study for the coherent integration with integrated radar and communication waveform based on OFDM[J]. Journal of Signal Processing, 2017, 33(3): 253–259. doi: 10.16798/j.issn.1003-0530.2017.03.001
    [30]
    TEMIZ M, ALSUSA E, and BAIDAS M W. A dual-functional massive mimo ofdm communication and radar transmitter architecture[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14974–14988. doi: 10.1109/TVT.2020.3031686
    [31]
    TEMIZ M, ALSUSA E, and BAIDAS M W. Optimized precoders for massive MIMO OFDM dual radar-communication systems[J]. IEEE Transactions on Communications, 2021, 69(7): 4781–4794. doi: 10.1109/TCOMM.2021.3068485
    [32]
    TIAN Tuanwei, ZHANG Tianxian, KONG Lingjiang, et al. Transmit/receive beamforming for MIMO-OFDM based dual-function radar and communication[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4693–4708. doi: 10.1109/TVT.2021.3072094
    [33]
    JOHNSTON J, VENTURINO L, GROSSI E, et al. MIMO OFDM dual-function radar-communication under error rate and beampattern constraints[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1951–1964. doi: 10.1109/JSAC.2022.3156651
    [34]
    MEALEY R M. A method for calculating error probabilities in a radar communication system[J]. IEEE Transactions on Space Electronics and Telemetry, 1963, 9(2): 37–42. doi: 10.1109/TSET.1963.4337601
    [35]
    FIDEN W H and CZUBIAK D W. Radar-compatible data link system[P]. US, 7298313B1, 2007.
    [36]
    刘智星, 全英汇, 肖国尧, 等. 基于PRI捷变的雷达通信一体化共享信号设计方法[J]. 系统工程与电子技术, 2021, 43(10): 2836–2842. doi: 10.12305/j.issn.1001-506X.2021.10.17

    LIU Zhixing, QUAN Yinghui, XIAO Guoyao, et al. Signal design method for integrated radar and communication based on PRI agility[J]. Systems Engineering and Electronics, 2021, 43(10): 2836–2842. doi: 10.12305/j.issn.1001-506X.2021.10.17
    [37]
    SADDIK G N, SINGH R S, and BROWN E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(7): 1431–1437. doi: 10.1109/TMTT.2007.900343
    [38]
    陈兴波, 王小谟, 曹晨, 等. 雷达通信综合化波形设计技术分析[J]. 现代雷达, 2013, 35(12): 56–59. doi: 10.16592/j.cnki.1004-7859.2013.12.016

    CHEN Xingbo, WANG Xiaomo, CAO Chen, et al. Techniques analysis of radar-communication integrating waveform[J]. Modern Radar, 2013, 35(12): 56–59. doi: 10.16592/j.cnki.1004-7859.2013.12.016
    [39]
    刘志鹏. 雷达通信一体化波形研究[D]. [博士论文], 北京理工大学, 2015.

    LIU Zhipeng. Waveform research on integration of radar and communication[D]. [Ph. D. dissertation], Beijing Institute of Technology, 2015.
    [40]
    付月, 崔国龙, 盛彪. 基于LFM信号相位/调频率调制的探通一体化共享信号设计[J] 现代雷达, 2018, 40(6): 41–46, 53.

    FU Yue, CUI Guolong, and SHENG Biao. Integrated radar and communication signal design based on phase/chirp rate modulated LFM signal[J] Modern Radar, 2018, 40(6): 41–46, 53.
    [41]
    SAHIN C, JAKABOSKY J, MCCORMICK P M, et al. A novel approach for embedding communication symbols into physical radar waveforms[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1498–1503.
    [42]
    杨超. 传感通信一体化FMCW波形设计与信号处理[D]. [博士论文], 桂林电子科技大学, 2020.

    YANG Chao. Sensing and communication integration waveform designing and signal processing based on FMCW[D]. [Ph. D. dissertation], Guilin University of Electronic Technology, 2020.
    [43]
    CUI Guolong, YANG Jing, LU Shuping, et al. Dual-use unimodular sequence design via frequency nulling modulation[J]. IEEE Access, 2018, 6: 62470–62481. doi: 10.1109/ACCESS.2018.2876644
    [44]
    YANG Jing, CUI Guolong, YU Xianxiang, et al. Dual-use signal design for radar and communication via ambiguity function sidelobe control[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9781–9794. doi: 10.1109/TVT.2020.3002773
    [45]
    YANG Jing, TAN Youshan, YU Xianxiang, et al. Waveform design for watermark framework based DFRC system with application on joint SAR imaging and communication[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5200214. doi: 10.1109/TGRS.2022.3232528
    [46]
    HASSANIEN A, HIMED B, and RIGLING B D. A dual-function MIMO radar-communications system using frequency-hopping waveforms[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1721–1725.
    [47]
    EEDARA I P, AMIN M G, and HASSANIEN A. Controlling clutter modulation in frequency hopping MIMO dual-function radar communication systems[C]. 2020 IEEE International Radar Conference, Washington, USA, 2020: 466–471.
    [48]
    EEDARA I P, HASSANIEN A, and AMIN M G. Performance analysis of dual-function multiple-input multiple-output radar-communications using frequency hopping waveforms and phase shift keying signalling[J]. IET Radar, Sonar & Navigation, 2021, 15(4): 402–418. doi: 10.1049/rsn2.12043
    [49]
    EEDARA I P, AMIN M G, and HOORFAR A. Optimum code design using genetic algorithm in frequency hopping dual function MIMO radar communication systems[C]. 2020 IEEE Radar Conference, Florence, Italy, 2020: 1–6.
    [50]
    EEDARA I P, AMIN M G, and FABRIZIO G A. Target detection in frequency hopping MIMO dual-function radar-communication systems[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, 2021: 8458–8462.
    [51]
    EEDARA I P, AMIN M G, HOORFAR A, et al. Dual-function frequency-hopping MIMO radar system with CSK signaling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 1501–1513. doi: 10.1109/TAES.2021.3139445
    [52]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667
    [53]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Signaling strategies for dual-function radar communications: An overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 36–45. doi: 10.1109/MAES.2016.150225
    [54]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Efficient sidelobe ASK based dual-function radar-communications[C]. SPIE 9829, Radar Sensor Technology XX, Baltimore, USA, 2016: 98290K.
    [55]
    EUZIÈRE J, GUINVARC’H R, LESTURGIE M, et al. Dual function radar communication time-modulated array[C]. 2014 International Radar Conference, Lille, France, 2014: 1–4.
    [56]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Phase-modulation based dual-function radar-communications[J]. IET Radar, Sonar & Navigation, 2016, 10(8): 1411–1421. doi: 10.1049/iet-rsn.2015.0484
    [57]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Non-coherent PSK-based dual-function radar-communication systems[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6.
    [58]
    AHMED A, ZHANG Y D, and HIMED B. Multi-user dual-function radar-communications exploiting sidelobe control and waveform diversity[C]. 2018 IEEE Radar Conference, Oklahoma, USA, 2018: 698–702.
    [59]
    AHMED A, ZHANG Y D, and GU Yujie. Dual-function radar-communications using QAM-based sidelobe modulation[J]. Digital Signal Processing, 2018, 82: 166–174. doi: 10.1016/j.dsp.2018.06.018
    [60]
    HASSANIEN A, VOROBYOV S A, and KHABBAZIBASMENJ A. Transmit radiation pattern invariance in MIMO radar with application to DOA estimation[J]. IEEE Signal Processing Letters, 2015, 22(10): 1609–1613. doi: 10.1109/LSP.2015.2417220
    [61]
    GEMECHU A Y, CUI Guolong, YU Xianxiang, et al. Beampattern synthesis with sidelobe control and applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(1): 297–310. doi: 10.1109/TAP.2019.2938730
    [62]
    GEMECHU A Y, CUI Guolong, YU Xianxiang, et al. Phase-only beampattern synthesis with nulling for linear antenna arrays[C]. 2019 IEEE International Symposium on Phased Array System & Technology, Waltham, USA, 2019: 1–7.
    [63]
    YU Xianxiang, YAO Xue, YANG Jing, et al. Integrated waveform design for MIMO radar and communication via spatio-spectral modulation[J]. IEEE Transactions on Signal Processing, 2022, 70: 2293–2305. doi: 10.1109/TSP.2022.3170687
    [64]
    WU Wenhua, HAN Guojun, CAO Yunhe, et al. MIMO waveform design for dual functions of radar and communication with space-time coding[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1906–1917. doi: 10.1109/JSAC.2022.3155508
    [65]
    TANG Bo and STOICA P. MIMO multifunction RF systems: Detection performance and waveform design[J]. IEEE Transactions on Signal Processing, 2022, 70: 4381–4394. doi: 10.1109/TSP.2022.3202315
    [66]
    DI RENZO M, HAAS H, GHRAYEB A, et al. Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation[J]. Proceedings of the IEEE, 2014, 102(1): 56–103. doi: 10.1109/JPROC.2013.2287851
    [67]
    BASAR E. Index modulation techniques for 5G wireless networks[J]. IEEE Communications Magazine, 2016, 54(7): 168–175. doi: 10.1109/MCOM.2016.7509396
    [68]
    BAŞAR E. OFDM with index modulation using coordinate interleaving[J]. IEEE Wireless Communications Letters, 2015, 4(4): 381–384. doi: 10.1109/LWC.2015.2423282
    [69]
    HASSANIEN A, ABOUTANIOS E, AMIN M G, et al. A dual-function MIMO radar-communication system via waveform permutation[J]. Digital Signal Processing, 2018, 83: 118–128. doi: 10.1016/j.dsp.2018.08.010
    [70]
    杨婧, 余显祥, 沙明辉, 等. MIMO系统探通一体化信号矩阵设计方法[J]. 雷达学报. 待出版

    YANG Jing, YU Xianxiang, SHA Minghui, et al. Dual function radar and communication signal matrix design method for MIMO system[J]. Journal of Radars, in press
    [71]
    WANG Xiangrong, HASSANIEN A, and AMIN M G. Dual-function MIMO radar communications system design via sparse array optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1213–1226. doi: 10.1109/TAES.2018.2866038
    [72]
    BAXTER W, ABOUTANIOS E, and HASSANIEN A. Dual-function MIMO radar-communications via frequency-hopping code selection[C]. 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2018: 1126–1130.
    [73]
    BAXTER W, ABOUTANIOS E, and HASSANIEN A. Joint radar and communications for frequency-hopped MIMO systems[J]. IEEE Transactions on Signal Processing, 2022, 70: 729–742. doi: 10.1109/TSP.2022.3142909
    [74]
    HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394
    [75]
    MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. FRaC: FMCW-based joint radar-communications system via index modulation[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1348–1364. doi: 10.1109/JSTSP.2021.3118219
    [76]
    XU Jing, WANG Xiangrong, ABOUTANIOS E, et al. Hybrid index modulation for dual-functional radar communications systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3186–3200. doi: 10.1109/TVT.2022.3219888
    [77]
    KOBAYASHI M, CAIRE G, and KRAMER G. Joint state sensing and communication: Optimal tradeoff for a memoryless case[C]. 2018 IEEE International Symposium on Information Theory, Vail, USA, 2018: 111–115.
    [78]
    KOBAYASHI M, HAMAD H, KRAMER G, et al. Joint state sensing and communication over memoryless multiple access channels[C]. 2019 IEEE International Symposium on Information Theory, Paris, France, 2019: 270–274.
    [79]
    WEINER I. High-SNR channel capacity for communication over radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1261–1268. doi: 10.1109/TAES.2018.2884858
    [80]
    LIU Xiang, HUANG Tianyao, LIU Yimin, et al. Achievable sum-rate capacity optimization for joint MIMO multiuser communications and radar[C]. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications, Lucca, Italy, 2021: 466–470.
    [81]
    刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113
    [82]
    马丁友, 刘祥, 黄天耀, 等. 雷达通信一体化: 共用波形设计和性能边界[J]. 雷达学报, 2022, 11(2): 198–212. doi: 10.12000/JR21146

    MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146
    [83]
    MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Bit constrained communication receivers in joint radar communications systems[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Canada, 2021: 8243–8247.
    [84]
    CHENG Ziyang, SHI Shengnan, HE Zishu, et al. Transmit sequence design for dual-function radar-communication system with one-bit DACs[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5846–5860. doi: 10.1109/TWC.2021.3070586
    [85]
    YU Xiaoyou, YANG Qi, XIAO Zhu, et al. A precoding approach for dual-functional radar-communication system with one-bit DACs[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1965–1977. doi: 10.1109/JSAC.2022.3155532
  • Relative Articles

    [1]LI Meilin, HAN Chong. Terahertz Communication and Sensing Framework Based on Orthogonal Delay-Doppler Division Multiplexing Modulation[J]. Journal of Radars. doi: 10.12000/JR24238
    [2]TANG Aimin, WANG Shuhan, QU Wenze. Reference Signal Design in OFDM ISAC for Long-range and High-speed UAV Detection[J]. Journal of Radars. doi: 10.12000/JR24240
    [3]LIU Fan, LU Shihang, CHEN Zihao. MIMO-ISAC Precoding Design Toward Random Signals[J]. Journal of Radars. doi: 10.12000/JR25019
    [4]HE Zhuoyuan, CHEN Shengyao, ZHU Han, XI Feng, LI Hongtao, LIU Zhong. Transmit Waveform Design for Symbol-Level Precoding-based One-Bit Dual-Functional Radar-Communication[J]. Journal of Radars. doi: 10.12000/JR24217
    [5]HE Yaping, SHI Longfei, WANG Dong, TANG Jianglan, CHEN Junxian, MA Jiazhi, LIU Jialei. Research Progress on Dual Function Radar and Communication Signal Design and its Application in Typical Detection Scenarios[J]. Journal of Radars. doi: 10.12000/JR24213
    [6]LIU Yan, WAN Xianrong, YI Jianxin. OFDM Waveform Design for Joint Radar-communication Based on Data Distortion[J]. Journal of Radars, 2024, 13(1): 160-173. doi: 10.12000/JR23205
    [7]LIU Liu, LIANG Xingdong, LI Yanlei, ZENG Zhiyuan, TANG Haibo. A Novel Joint Radar-communication Waveform Design Method Based on Distributed Aperture[J]. Journal of Radars, 2023, 12(2): 297-311. doi: 10.12000/JR23019
    [8]LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064
    [9]YANG Jing, YU Xianxiang, SHA Minghui, CUI Guolong, KONG Lingjiang. Dual Function Radar and Communication Signal Matrix Design Method for MIMO System[J]. Journal of Radars, 2023, 12(2): 262-274. doi: 10.12000/JR22087
    [10]WANG Jiahuan, FAN Pingzhi, SHI Qiao, ZHOU Zhengchun. Doppler Resilient Integrated Sensing and Communication Waveforms Design[J]. Journal of Radars, 2023, 12(2): 275-286. doi: 10.12000/JR22155
    [11]WU Wenjun, TANG Bo, TANG Jun, HU Yuankui. Waveform Design for Dual-function Radar-communication Systems in Clutter[J]. Journal of Radars, 2022, 11(4): 570-580. doi: 10.12000/JR22105
    [12]LAN Lan, LIAO Guisheng, XU Jingwei, ZHU Shengqi, ZENG Cao, ZHANG Yuhong. Waveform Design and Signal Processing Method of a Multifunctional Integrated System Based on a Frequency Diverse Array(in English)[J]. Journal of Radars, 2022, 11(5): 850-870. doi: 10.12000/JR22163
    [13]MA Dingyou, LIU Xiang, HUANG Tianyao, LIU Yimin. Joint Radar and Communications: Shared Waveform Designs and Performance Bounds[J]. Journal of Radars, 2022, 11(2): 198-212. doi: 10.12000/JR21146
    [14]ZHU Shengqi, YU Kun, XU Jingwei, LAN Lan, LI Ximin. Research Progress and Prospect for the Noval Waveform Diverse Array Radar[J]. Journal of Radars, 2021, 10(6): 795-810. doi: 10.12000/JR21188
    [15]ZHAO Yuzhen, CHEN Longyong, ZHANG Fubo, LI Yanlei, WU Yirong. A New Method of Joint Radar and Communication Waveform Design and Signal Processing Based on OFDM-chirp[J]. Journal of Radars, 2021, 10(3): 453-466. doi: 10.12000/JR21028
    [16]LIU Fan, YUAN Weijie, YUAN Jinhong, ZHANG J. Andrew, FEI Zesong, ZHOU Jianming. Radar-communication Spectrum Sharing and Integration: Overview and Prospect[J]. Journal of Radars, 2021, 10(3): 467-484. doi: 10.12000/JR20113
    [17]CUI Guolong, YU Xianxiang, YANG Jing, FU Yue, KONG Lingjiang. An Overview of Waveform Optimization Methods for Cognitive Radar[J]. Journal of Radars, 2019, 8(5): 537-557. doi: 10.12000/JR19072
    [18]Xu Jingwei, Zhu Shengqi, Liao Guisheng, Zhang Yuhong. An Overview of Frequency Diverse Array Radar Technology[J]. Journal of Radars, 2018, 7(2): 167-182. doi: 10.12000/JR18023
    [19]Zhu Kehong, Wang Jie, Liang Xingdong, Wu Yirong. Filter Bank Multicarrier Waveform Used for Integrated SAR and Communication Systems[J]. Journal of Radars, 2018, 7(5): 602-612. doi: 10.12000/JR18038
    [20]Li Zi-qi, Mei Jin-jie, Hu Deng-oeng, Shen Xu-chi, Li Xiao-bai. Peak-to-Average Power Ratio Reduction for Integration of Radar and Communication Systems Based on OFDM Signals with Block Golay Coding[J]. Journal of Radars, 2014, 3(5): 548-555. doi: 10.3724/SP.J.1300.2014.14059
  • Cited by

    Periodical cited type(4)

    1. 门伟,张亮,杜军,殷宏宇,任勇,殷敬伟. 探测通信一体化波形研究进展和声呐应用展望. 信号处理. 2025(01): 1-19 .
    2. 贺立,刘静,田锦,沈宏晔,吕品竹,陈雨沁. 移动通信基站他发自收感知技术研究. 通信技术. 2025(02): 151-156 .
    3. 刘燕,万显荣,易建新. 基于数据失真的雷达通信一体化OFDM波形设计方法. 雷达学报. 2024(01): 160-173 . 本站查看
    4. 刘毓,杨志航,姚雪,陈姣. 联合波形选择和PRI捷变探通一体化波形设计. 现代雷达. 2023(10): 80-87 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04050100150200
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 35.9 %FULLTEXT: 35.9 %META: 53.1 %META: 53.1 %PDF: 11.0 %PDF: 11.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.5 %其他: 9.5 %其他: 1.3 %其他: 1.3 %Central District: 0.2 %Central District: 0.2 %China: 0.5 %China: 0.5 %Falls Church: 0.2 %Falls Church: 0.2 %Herndon: 0.0 %Herndon: 0.0 %Kao-sung: 0.1 %Kao-sung: 0.1 %Koesan: 0.1 %Koesan: 0.1 %Matawan: 0.0 %Matawan: 0.0 %Research: 0.0 %Research: 0.0 %San Mateo: 0.0 %San Mateo: 0.0 %Seattle: 0.1 %Seattle: 0.1 %Thane: 0.0 %Thane: 0.0 %Waterloo: 0.0 %Waterloo: 0.0 %[]: 0.1 %[]: 0.1 %三亚: 0.0 %三亚: 0.0 %上海: 3.2 %上海: 3.2 %上饶: 0.0 %上饶: 0.0 %东京: 0.2 %东京: 0.2 %东京都: 0.0 %东京都: 0.0 %东莞: 1.1 %东莞: 1.1 %中卫: 0.4 %中卫: 0.4 %中山: 0.1 %中山: 0.1 %临汾: 0.0 %临汾: 0.0 %临沂: 0.1 %临沂: 0.1 %丹东: 0.0 %丹东: 0.0 %丽水: 0.2 %丽水: 0.2 %乐山: 0.1 %乐山: 0.1 %九江: 0.0 %九江: 0.0 %九龙: 0.0 %九龙: 0.0 %亚特兰大: 0.1 %亚特兰大: 0.1 %亳州: 0.0 %亳州: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %伊斯坦布尔: 0.0 %伊斯坦布尔: 0.0 %伊春: 0.0 %伊春: 0.0 %伊犁: 0.0 %伊犁: 0.0 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.1 %佛山: 0.1 %佳木斯: 0.0 %佳木斯: 0.0 %保定: 0.1 %保定: 0.1 %信阳: 0.1 %信阳: 0.1 %儋州: 0.0 %儋州: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 0.2 %兰州: 0.2 %内江: 0.1 %内江: 0.1 %凤凰城: 0.0 %凤凰城: 0.0 %加利福尼亚州: 0.0 %加利福尼亚州: 0.0 %包头: 0.0 %包头: 0.0 %北京: 11.4 %北京: 11.4 %北海: 0.0 %北海: 0.0 %十堰: 0.2 %十堰: 0.2 %南京: 4.3 %南京: 4.3 %南充: 0.0 %南充: 0.0 %南宁: 0.2 %南宁: 0.2 %南昌: 0.2 %南昌: 0.2 %南通: 0.1 %南通: 0.1 %南阳: 0.1 %南阳: 0.1 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.3 %厦门: 0.3 %台北: 0.2 %台北: 0.2 %台州: 0.8 %台州: 0.8 %合肥: 0.9 %合肥: 0.9 %吉安: 0.0 %吉安: 0.0 %吉林: 0.1 %吉林: 0.1 %周口: 0.0 %周口: 0.0 %呼伦贝尔: 0.0 %呼伦贝尔: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %和田: 0.0 %和田: 0.0 %哈尔滨: 0.5 %哈尔滨: 0.5 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.0 %唐山: 0.0 %商洛: 0.0 %商洛: 0.0 %喀什: 0.0 %喀什: 0.0 %嘉兴: 0.2 %嘉兴: 0.2 %圣何塞: 0.0 %圣何塞: 0.0 %塔城: 0.0 %塔城: 0.0 %多伦多: 0.0 %多伦多: 0.0 %大庆: 0.0 %大庆: 0.0 %大连: 0.2 %大连: 0.2 %天津: 1.5 %天津: 1.5 %太原: 0.2 %太原: 0.2 %奥卢: 0.1 %奥卢: 0.1 %威海: 0.4 %威海: 0.4 %娄底: 0.1 %娄底: 0.1 %孝感: 0.0 %孝感: 0.0 %孟买: 0.3 %孟买: 0.3 %宁德: 0.0 %宁德: 0.0 %宁波: 0.1 %宁波: 0.1 %安庆: 0.1 %安庆: 0.1 %安康: 0.3 %安康: 0.3 %安阳: 0.0 %安阳: 0.0 %安顺: 0.0 %安顺: 0.0 %官坑: 0.0 %官坑: 0.0 %宜宾: 0.0 %宜宾: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.6 %宣城: 0.6 %宾夕法尼亚州: 0.0 %宾夕法尼亚州: 0.0 %宿州: 0.1 %宿州: 0.1 %密蘇里城: 0.0 %密蘇里城: 0.0 %岳阳: 0.0 %岳阳: 0.0 %巴中: 0.0 %巴中: 0.0 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %帕多瓦: 0.0 %帕多瓦: 0.0 %常州: 0.4 %常州: 0.4 %常德: 0.2 %常德: 0.2 %平顶山: 0.0 %平顶山: 0.0 %广州: 1.9 %广州: 1.9 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %廊坊: 0.0 %廊坊: 0.0 %延安: 0.0 %延安: 0.0 %开封: 0.4 %开封: 0.4 %弗吉: 0.0 %弗吉: 0.0 %张家口: 1.4 %张家口: 1.4 %徐州: 0.2 %徐州: 0.2 %得克萨斯州: 0.0 %得克萨斯州: 0.0 %德州: 0.0 %德州: 0.0 %德罕: 0.0 %德罕: 0.0 %德阳: 0.0 %德阳: 0.0 %忻州: 0.0 %忻州: 0.0 %悉尼: 0.0 %悉尼: 0.0 %成都: 3.2 %成都: 3.2 %扬州: 0.5 %扬州: 0.5 %承德: 0.0 %承德: 0.0 %拉科鲁尼亚省: 0.0 %拉科鲁尼亚省: 0.0 %揭阳: 0.0 %揭阳: 0.0 %新加坡: 0.0 %新加坡: 0.0 %新德里: 0.1 %新德里: 0.1 %无锡: 0.1 %无锡: 0.1 %旧金山: 0.0 %旧金山: 0.0 %昆明: 0.9 %昆明: 0.9 %晋中: 0.0 %晋中: 0.0 %晋城: 0.0 %晋城: 0.0 %景德镇: 0.0 %景德镇: 0.0 %曼彻斯特: 0.1 %曼彻斯特: 0.1 %曼谷: 0.0 %曼谷: 0.0 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.6 %杭州: 1.6 %松原: 0.0 %松原: 0.0 %林芝: 0.0 %林芝: 0.0 %枣庄: 0.0 %枣庄: 0.0 %柳州: 0.0 %柳州: 0.0 %株洲: 0.0 %株洲: 0.0 %根特: 0.0 %根特: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.0 %桂林: 0.0 %榆林: 0.0 %榆林: 0.0 %: 0.0 %: 0.0 %武汉: 1.2 %武汉: 1.2 %汕头: 0.0 %汕头: 0.0 %江门: 0.0 %江门: 0.0 %池州: 0.0 %池州: 0.0 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.0 %沧州: 0.0 %法兰克福: 0.0 %法兰克福: 0.0 %泸州: 0.0 %泸州: 0.0 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.4 %洛阳: 0.4 %济南: 0.3 %济南: 0.3 %济宁: 0.0 %济宁: 0.0 %海东: 0.0 %海东: 0.0 %海口: 0.0 %海口: 0.0 %淄博: 0.0 %淄博: 0.0 %淮北: 0.0 %淮北: 0.0 %淮南: 0.0 %淮南: 0.0 %淮安: 0.0 %淮安: 0.0 %深圳: 2.2 %深圳: 2.2 %温州: 0.4 %温州: 0.4 %渭南: 0.1 %渭南: 0.1 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.1 %湘潭: 0.1 %湛江: 0.2 %湛江: 0.2 %滁州: 0.0 %滁州: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 1.6 %漯河: 1.6 %潍坊: 0.0 %潍坊: 0.0 %澳门: 0.0 %澳门: 0.0 %濮阳: 0.0 %濮阳: 0.0 %烟台: 0.1 %烟台: 0.1 %牛津: 0.0 %牛津: 0.0 %瑟农: 0.0 %瑟农: 0.0 %甘南: 0.1 %甘南: 0.1 %田纳西州: 0.0 %田纳西州: 0.0 %甲府: 0.1 %甲府: 0.1 %盐城: 0.1 %盐城: 0.1 %眉山: 0.0 %眉山: 0.0 %石嘴山: 0.0 %石嘴山: 0.0 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.3 %福州: 0.3 %科尔切斯特: 0.0 %科尔切斯特: 0.0 %秦皇岛: 0.3 %秦皇岛: 0.3 %纽约: 0.1 %纽约: 0.1 %纽黑文: 0.0 %纽黑文: 0.0 %绍兴: 0.2 %绍兴: 0.2 %绵阳: 0.0 %绵阳: 0.0 %肯特: 0.0 %肯特: 0.0 %肯辛顿: 0.0 %肯辛顿: 0.0 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 13.4 %芒廷维尤: 13.4 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.6 %苏州: 0.6 %莆田: 0.1 %莆田: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %菏泽: 0.0 %菏泽: 0.0 %葫芦岛: 0.0 %葫芦岛: 0.0 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.3 %衢州: 0.3 %襄阳: 0.0 %襄阳: 0.0 %西宁: 6.5 %西宁: 6.5 %西安: 3.6 %西安: 3.6 %西雅图: 0.0 %西雅图: 0.0 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.0 %费利蒙: 0.0 %赣州: 0.0 %赣州: 0.0 %辽源: 0.0 %辽源: 0.0 %辽阳: 0.0 %辽阳: 0.0 %运城: 0.3 %运城: 0.3 %遵义: 0.0 %遵义: 0.0 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.2 %邯郸: 0.2 %邵阳: 0.0 %邵阳: 0.0 %郑州: 0.9 %郑州: 0.9 %郴州: 0.0 %郴州: 0.0 %重庆: 1.6 %重庆: 1.6 %金华: 0.1 %金华: 0.1 %铁岭: 0.0 %铁岭: 0.0 %银川: 0.0 %银川: 0.0 %镇江: 0.2 %镇江: 0.2 %长春: 0.2 %长春: 0.2 %长沙: 2.8 %长沙: 2.8 %长治: 0.0 %长治: 0.0 %阿布奎基: 0.0 %阿布奎基: 0.0 %阿菲永卡拉希萨尔: 0.1 %阿菲永卡拉希萨尔: 0.1 %雅加达: 0.1 %雅加达: 0.1 %青岛: 0.9 %青岛: 0.9 %首尔: 0.2 %首尔: 0.2 %首尔特别: 0.1 %首尔特别: 0.1 %香港: 0.6 %香港: 0.6 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %马鞍山: 0.2 %马鞍山: 0.2 %黄冈: 0.0 %黄冈: 0.0 %黄石: 0.0 %黄石: 0.0 %黑格斯敦: 0.0 %黑格斯敦: 0.0 %齐齐哈尔: 0.3 %齐齐哈尔: 0.3 %其他其他Central DistrictChinaFalls ChurchHerndonKao-sungKoesanMatawanResearchSan MateoSeattleThaneWaterloo[]三亚上海上饶东京东京都东莞中卫中山临汾临沂丹东丽水乐山九江九龙亚特兰大亳州伊利诺伊州伊斯坦布尔伊春伊犁伦敦佛山佳木斯保定信阳儋州六安兰州内江凤凰城加利福尼亚州包头北京北海十堰南京南充南宁南昌南通南阳卡拉奇厦门台北台州合肥吉安吉林周口呼伦贝尔呼和浩特和田哈尔滨哥伦布唐山商洛喀什嘉兴圣何塞塔城多伦多大庆大连天津太原奥卢威海娄底孝感孟买宁德宁波安庆安康安阳安顺官坑宜宾宝鸡宣城宾夕法尼亚州宿州密蘇里城岳阳巴中巴音郭楞帕多瓦常州常德平顶山广州库比蒂诺廊坊延安开封弗吉张家口徐州得克萨斯州德州德罕德阳忻州悉尼成都扬州承德拉科鲁尼亚省揭阳新加坡新德里无锡旧金山昆明晋中晋城景德镇曼彻斯特曼谷朝阳杭州松原林芝枣庄柳州株洲根特格兰特县桂林榆林武汉汕头江门池州沈阳沧州法兰克福泸州洛杉矶洛阳济南济宁海东海口淄博淮北淮南淮安深圳温州渭南湖州湘潭湛江滁州滨州漯河潍坊澳门濮阳烟台牛津瑟农甘南田纳西州甲府盐城眉山石嘴山石家庄福州科尔切斯特秦皇岛纽约纽黑文绍兴绵阳肯特肯辛顿舟山芒廷维尤芝加哥苏州莆田莫斯科菏泽葫芦岛蚌埠衡水衡阳衢州襄阳西宁西安西雅图诺沃克贵阳费利蒙赣州辽源辽阳运城遵义邢台邯郸邵阳郑州郴州重庆金华铁岭银川镇江长春长沙长治阿布奎基阿菲永卡拉希萨尔雅加达青岛首尔首尔特别香港香港特别行政区马鞍山黄冈黄石黑格斯敦齐齐哈尔1/2

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3300) PDF downloads(684) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint