Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
TAN Pengyuan, ZHU Jianjun, FU Haiqiang, et al. Inversion of forest height based on ALOS-2 PARSAR-2 multi-baseline polarimetric SAR interferometry data[J]. Journal of Radars, 2020, 9(3): 569–577. doi: 10.12000/JR20030
Citation: CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072

An Overview of Waveform Optimization Methods for Cognitive Radar

DOI: 10.12000/JR19072
Funds:  The National Natural Science Foundation of China (61771109, 61871080), The Changjiang Scholar Program, 111 Project (B17008), The Fundamental Research Funds for the Central Universities (2672018ZYGX2018J016)
More Information
  • Corresponding author: CUI Guolong, cuiguolong@uestc.edu.cn
  • Received Date: 2019-08-01
  • Rev Recd Date: 2019-10-06
  • Available Online: 2019-10-18
  • Publish Date: 2019-10-01
  • Cognitive radar can sense the battlefield environment and feed this information back to a transmitter by imitating the cognitive learning process of bats to enable self-adaptive detection and processing, which are vital for the future intelligent development of radar. Therein, full utilization of the prior information of the target and environment to design radar waveform for improving the performance of target detection, tracking, and anti-jamming is difficult and has been the focus of cognitive radar development. Therefore, based on different jamming environments, target models, and antenna configurations (e.g., Single Input Single Output (SISO) and Multiple Inputs Multiple Outputs (MIMO)), this study summarizes the key elements and main ideas of waveform design. Furthermore, this study lists the related literature on representativeness from the viewpoint of the use of different jamming environments and target models, aiming at providing reference and basis for cognitive waveform design research in the future.

     

  • 极化SAR (PolSAR) 图像地物分类在地质勘探、地形分析以及灾害监测等方面具有广泛的应用[1]。随着理论水平的逐年提高,加上图像处理领域的巨大需求,极化SAR图像的分类问题成为了研究领域的热点。

    根据算法是否依赖于数据的先验样本,极化SAR图像分类算法可以具体地分为有监督与无监督两大类。无监督分类方法主要是利用极化数据的统计特征对同类型像素进行分类,不需要进行训练,因此当训练样本严重不足的情况下,采用无监督分类方法的优势十分明显。且无监督方法的图像分类过程简单,充分利用了图像的有效信息,适用范围十分广泛。无监督的极化SAR分类主要分为两类:基于地物目标电磁散射特性和统计特性的分类法[2]以及基于聚类分析和图像处理技术的分类法[3]。然而目前基于无监督的方法大多从极化数据的统计特性和散射特性角度出发,很少从图像本身角度去考虑,不能充分利用极化数据的特征信息,无法全面地描述地面目标的物理属性。因此,如何深度挖掘极化SAR图像的特征信息,采用高效的处理方法提高分类精度,是当前极化SAR分类面临的挑战,同时也是本文重点关注的问题。

    谱聚类在分析复杂的数据结构信息时,通过得到数据点的不同相似图来预测聚类标签,往往能够显示出其较强的聚类能力。将判别聚类方法应用到极化SAR图像的分类中有两个优点:首先,判别聚类可以将有监督的判别能力引入无监督分类问题中,现有的监督学习工具在弱监督任务和无监督任务中具有良好的重要性能;其次,判别聚类是一个通用框架,它允许将不同的判别损失函数或其他特定领域的约束合并到一个单一的损失函数中,适用于不同的应用程序,并且具有很强的灵活性[4]

    但是,现有的聚类方法只是简单地将数据中的信息组合在一起,产生的噪声会大大降低聚类的性能。为了解决上述问题,本文提出一种基于马尔科夫的判别谱聚类方法(Markov Discriminative Spectral Clustering,MDSC),具有低秩和稀疏分解的特点。在应用本方法时,首先需要构造一个原始的概率转移矩阵,然后用其恢复一个真实的低秩概率转移矩阵作为标准马尔科夫谱聚类方法的关键输入。为了能够对极化SAR的数据信息进行多层次利用,本文在目标函数中引入了判别信息以提升聚类精度。

    对于本方法中的目标函数的优化问题,在概率转移矩阵上有一个低秩约束,同时在该矩阵的每一行上有一个概率单纯形约束,本文提出了一种基于增广拉格朗日乘子法的优化方法来解决这个有难度的优化问题。本文后续在各种实际数据集上进行实验,结果表明,本方法具有较好的准确率,表现出了良好的分类性能。

    由随机游走理论分析,当随机游走到某个分类时,在该类中停留的概率较大,游走到其他类的概率较小。由此,Meila等人[5]提出,谱聚类可以用图结构上的马尔科夫随机游动框架来描述。马尔科夫链状态簇是根据每个状态到平稳态的距离进行聚类的,可以在拓扑图上的随机游走框架中连接,状态转移概率图可以看作是一个有向图。由此将谱聚类的图谱理论应用于马尔科夫链中,以达到聚类的目的。求解马尔科夫随机游动的转移概率矩阵的特征值问题可以用来确定图上的归一化分割。本文所用的标准马尔科夫谱聚类算法流程如下:

    步骤1 计算所有数据点的相似度,构建相似度矩阵S;

    步骤2 计算概率转移矩阵P=D–1S以及它的平稳分布π=Pπ;

    步骤3 构造拉普拉斯矩阵L=P–1/2(PP+PTP),其中P表示对角元素为π(i)的对角矩阵;

    步骤4 对L进行特征分解,得到前k个最小的特征向量;

    步骤5 将这前k个特征向量作为矩阵的列向量构建特征矩阵;

    步骤6 将特征矩阵的每一行作为数据点,利用k -均值算法对其进行聚类。

    在马尔科夫判别谱聚类方法中,最为关键的一步是如何构造一个精确的概率转移矩阵。本文通过低秩和稀疏分解的方法,恢复真实的概率转移矩阵,并将其用作标准马尔科夫谱聚类方法的输入,以获得最终的聚类解决方案。

    该方法的基本假设有两个:

    (1) 无向加权图G的特征足以发现大部分聚类信息;

    (2) 提取的特征可能会被噪声破坏,即这些噪声可能会导致一小部分数据点被分配到错误的类。

    给定一组数据点{x1,x2,···,xn},可以构造它们之间的相似度矩阵S和相应的加权图G=(V,E,S)。根据上述两个假设,原始概率转移矩阵P的构造形式可以被分解为如下两个部分:一个反映底层真正聚类信息的真实概率转移矩阵ˆP,加上表示编码噪声的偏移误差矩阵E,如图1所示即

    图  1  真实的概率转移矩阵构造概图
    Figure  1.  Real probability transfer matrix construction profile
    P=ˆP+E (1)

    一旦ˆP被给出,那么就可以直接使用ˆP作为输入概率转移矩阵到马尔科夫链算法中进行谱聚类,得到最终的聚类解。

    在这一步中的一个关键问题是如何对潜在概率转移矩阵ˆP和误差矩阵E进行建模。

    在现实的谱聚类问题中,可以假设同一簇内任意两点之间的转移概率较高,而不同簇内两点之间的转移概率较低且近似为0,从而导致概率转移矩阵的秩往往较低。综上所述,根据这些观察结果可以假设,反映潜在真实聚类信息的概率转移矩阵往往是低秩的。

    误差矩阵E表示了PˆP之间的差异。根据假设,提取的特征足以识别大多数集群结构,所以P中的元素与ˆP中相应的元素只有一小部分显著不同,可以说误差矩阵E 趋于稀疏。

    综上所述,在低秩稀疏假设下,可以将真实的概率转移矩阵构造问题表示为,

    由于原始概率转移矩阵P的构建中只考虑了数据点之间的相似度,为了对数据信息进行多层次的充分利用,在目标函数中引入表示判别信息的判别损失函数Ec

    minˆP,E1,E2ˆP+λE1+βEc,s.t.P=ˆP+E,ˆP0,ˆP1=1 (2)

    其中,Ec表示极化 SAR 图像分类的判别损失函数,1是全一向量,λ, β表示非负平衡参数,迹范数ˆPˆP的秩在谱范数的单位球上的凸包络,在实际问题中,最小化迹范数能够得到理想的低秩结构[6]ˆP0,ˆP1=1表示ˆP的每一行都是一个概率分布,这强制保证了ˆP一定是一个概率转移矩阵。

    判别聚类是一个将不同的判别损失函数或其他特定约束合并到一个损失函数中的通用框架。在进行聚类的过程中,可以通过分析不同类别的样本信息,得到各自的特点与规律,进而构建出更加准确的判别准则对数据进行分类。本节将一种新的基于判别聚类的模型引入马尔科夫谱聚类算法中,提高算法的信息利用率,改善分类精度。

    本节根据SR模型[7]重新设计了判别损失函数,它结合了判别聚类项和正则项。前一项负责利用判别信息构建softmax损失函数,后一项负责降低由噪声和异常值引起的过拟合。

    综上所述,在判别聚类的基础上,将判别损失函数定义为

    Ec(P,W|X)=L(P,W|X)+R(W) (3)

    其中,W表示分类器矩阵,L(P,W|X)是softmax损失函数,R(W)表示正则项。引入softmax损失函数是为了解决由于不同类别的像素数不同而导致的样本不平衡问题,该函数度量了分类器W与原始的概率转移矩阵之间的一致性。用交叉熵来定义softmax损失函数L(P,W|X)

    L(P,W|X)=ni=1kj=1PijlogeWTjxikp=1eWTpxi (4)

    其中,e是自然常数,k表示类的个数。

    引用正则项R(W)来降低由噪声和异常值引起的过拟合。R(W)定义如下

    R(W)=ξki=1kj=1W2ij (5)

    其中,ξ是正则项参数,由于ξ>0,因此损失函数Ec是严格凸的,并且一定有一个唯一解。本文固定ξ=5×10–6

    判别损失函数Ec(P,W|X)虽然遵循SR模型的式,但本质上是不同的。在softmax分类方法中,训练数据集中的ground-truth类标签为常量。而在判别方法中,类标是在无监督算法下需要通过聚类得到的变量。

    在本节中将利用增广拉格朗日乘子法[8]来解决上一节中低秩和概率单纯形约束下的目标函数优化问题。与朴素拉格朗日方法相比,该方法提高了算法的鲁棒性,并放宽了函数的强凸约束,使变换后的问题更易于求解。

    下面根据 Xia 等人[9]提出的鲁棒多视角谱聚类(Robust Multi-view Spectral Clustering, RMSC)方法,对ˆP, E, Ec进行更新求解。

    首先假设Ec是已知的,式(2)对应的增广拉格朗日函数为

    L(ˆP,E,Ec)=ˆP+λE1+H,ˆP+EP+μ2ˆP+EP2F (6)

    其中,H是拉格朗日算子,μ>0是自适应惩罚参数。

    (1) 求解E 固定ˆP时,优化问题可以简化为

    minEλE1+μ2E(PˆPHμ)2F (7)

    利用奇异值阈值法[10]可以得到E的近似解

    E=Sλμ(PˆPHμ) (8)

    其中,Sδ(X)=max(Xδ)+min(X+δ)

    (2) 求解ˆP:固定E后,优化问题可以表示为

    \mathop {\min}\limits_{{E_1}} \lambda\left\| \hat {{P}}\right\|_{*} { + \frac{\mu }{2}} \left|\hat {{P}} - \left( {{{P}} - {{E}} - \frac{{{H}}}{{{μ}} }} \right) \right\|_{\rm{F}}^2 (9)

    {{{U}}{{∑}}{{V}}^{\rm{T}}}\left( {{{P}}- {{E}} - \dfrac{{{H}}}{\mu }} \right)的SVD分解,可以得到\hat {{P}}的解为

    \hat {{P}} = {{{S}}_{\scriptsize\displaystyle\frac{1}{\mu }}}\left( {{{P}} - {{E}} - \frac{{{H}}}{\mu }} \right) (10)

    (3) 求解Ec:根据式(10),由于{\hat {{P}}}可以通过迭代原始的概率转移矩阵P得到,因此可以通过固定的P来最小化分类器W,并使用迭代优化算法来解决这个问题。

    Ec进行求导,梯度可计算为

    {{∇}_{{W_j}}}{{{E}_{c}}} = - \mathop \sum \limits_{i = 1}^n \mathop \sum \limits_{j = 1}^n \left[ {{x_i}{P_{ij}}} \right] + 2\gamma {W_j} (11)

    根据这个求导式,使用L-BFGS优化算法[10]来最小化式。

    综上所述,真实的概率转移矩阵构建算法框架如下:

    步骤1 根据式(10)更新{\hat {{P}}}

    步骤2 根据式(8)更新E

    步骤3 令{{H}} \leftarrow {{H}} + \mu \left( {{{P}} - \hat {{P}}} \right)

    步骤4 令\mu \leftarrow \min (\rho \mu ,\max {x_\mu })

    步骤5 使用L-BFGS优化算法更新Ec;

    步骤6 达到终止条件\min \left(\left\|\hat {{P}} \!+\! {{E}} \!-\! {{P}}\right\|_\infty ,\right. \left\|{{{E}_{c}}}\right\|_\infty \Bigr) \le \omega后停止迭代。

    得到真实的概率转移矩阵后,即可按照表标准马尔科夫谱聚类的算法流程,得到极化SAR图像的最终分类结果,如图2所示。

    图  2  本文算法框架图
    Figure  2.  Algorithm frame diagram

    由于本文算法是在马尔科夫谱聚类算法基础上的改进模型,对目标函数的不足进行优化,并引入了判别信息。因此在实验中选取3个对比算法如下:

    (1) 联合正则谱聚类(Co-Regularized spectral clustering, Co-Reg) [11]:谱聚类的共正则化方法,Kumar于2011年提出;

    (2) 混合马尔科夫链(Mixture of Markov Chains, MMC)[12]:Zhou和Burges于 2007年提出的混合马尔科夫链方法,这是与本文所提基于马尔科夫链的判别谱聚类算法最相关的方法;

    (3) SR-MO算法[13]:Haixia Bi提出的无监督判别聚类方法,利用监督Softmax 逻辑回归 (Softmax logistic Regression, SR)模型和大量特征进行无监督分类并在分类过程中采用了马尔可夫随机场优化算法(Markov random field Optimization, MO),且考虑了空间关系。

    本节在荷兰Flevoland地区小农田和大农田、德国Oberpfaffenhofen地区和西安地区这4幅真实的极化SAR数据上进行实验,以上4种数据分别来自不同的成像系统,包含不同的波段与数据类型,通过以上数据证明本文算法的有效性。仿真实验均是在主频2.50 GHz的Intel(R) Core(TM) i5-7300HQ CPU, 8 G的内存环境和Windows10操作系统中编程实现的。实验结果均为MATLAB R2017a的软件环境中进行10次实验的平均值。

    本文实验主要用总体分类精度OA、平均分类精度AA以及Kappa系数作为分类的评价指标。

    本实验数据为NASA在1989年使用AIRSAR系统获得的荷兰Flevoland地区L波段的农田小图数据,该组图像的大小为300×270。图像主要包含裸土、马铃薯、甜菜、大麦、豌豆、小麦6种农作物。

    Co-Reg, MMC以及SR-MO 3种不同对比算法和本文算法对Flevoland地区小农田图的总体分类精度OA、平均分类精度AA以及Kappa系数如表1所示;分类结果图如图3所示。

    表  1  4种算法对Flevoland小农田图的分类结果
    Table  1.  Classification results of four algorithms for Flevoland small farmland map
    裸土土豆甜菜大麦豌豆小麦OAAAKappa
    Co-Reg0.88600.94520.75510.79060.82620.89600.84000.84980.8775
    MMC0.91800.95800.72420.96230.87560.69940.87080.83960.9005
    SR-MO0.90340.90490.88450.95610.83620.95540.91300.90670.9331
    本文算法0.90480.90880.88340.96040.89200.93820.92430.91460.9418
    下载: 导出CSV 
    | 显示表格
    图  3  荷兰Flevoland地区农田小图的伪彩图、类标图以及不同算法的分类结果图
    Figure  3.  Pseudo-color map, class diagram and classification results of different algorithms for farmland maps in the Flevoland region of the Netherlands

    图3中,图3(a)是荷兰Flevoland地区农田小图的Pauli分解伪彩图,图3(b)是地物类标图,图3(c)图3(e)分别是Co-Reg, MMC以及SR-MO算法的分类结果图,图3(f)是本文算法的分类结果图。

    从总体分类精度和平均分类精度来看,本文方法均为最高且总体分类精度达92.43%,分别比Co-Reg, MMC和SR-MO算法高出8.43%, 5.35%和1.13%。虽然MMC在马铃薯这一类的分类效果最好,对豌豆、小麦等大多数地物类别也更加准确,但这也导致了将部分甜菜等地物错分为马铃薯,影响分类精度。这也说明了与单纯马尔科夫谱聚类算法相比,本文提出的引入判别信息的马尔科夫谱聚类算法更有优势。并且在分类结果图中,可以看出本文算法对不同的地物分类比较均衡,边缘更清晰,孤立像素更少,显示出算法的平滑效果,Kappa系数也是最高的,验证了本文方法的有效性。

    本实验数据为德国国家宇航中心DLR使用ESAR系统拍摄的德国Oberpfaffenhofen地区L波段极化SAR数据的局部,400×450,分辨率为3×2.2 m。该区域主要分为农田、居民区、林地、道路和其它地物5类。

    Co-Reg, MMC和SR-MO 3种不同对比算法和本文算法对德国Oberpfaffenhofen地区的总体分类精度OA、平均分类精度AA以及Kappa系数如表2所示,分类的结果图如图4 所示。

    表  2  4种算法对德国Oberpfaffenhofen地区的分类结果
    Table  2.  Classification results of four algorithms for the Oberpfaffenhofen region of Germany
    Co-RegMMCSR-MO本文算法
    农田0.61110.60180.68590.7016
    居民区0.60720.65210.73360.7389
    林地0.81620.79930.90550.9108
    道路0.53110.56810.60490.6418
    其他0.87910.87890.86730.8814
    OA0.73630.74710.78220.7974
    AA0.68890.70000.75940.7749
    Kappa0.61700.63480.69200.7205
    下载: 导出CSV 
    | 显示表格
    图  4  德国Oberpfaffenhofen地区数据的伪彩图、类标图以及不同算法的分类结果图
    Figure  4.  Pseudo-color map, class diagram and data classification results of different algorithms in the Oberpfaffenhofen region of Germany

    图4中,图4(a)是德国Oberpfaffenhofen地区的Pauli分解伪彩图,图4(b)是地物类标图,图4(c)图4(e)分别是Co-Reg, MMC以及SR-MO算法的分类结果图,图4(f)是本文算法的分类结果图。

    图4中能够看出,图4(c)的杂点最多,区域一致性最差。图4(d)整体分类效果较好,但和本文算法相比,对边缘像素点的分类效果不太理想。图4(e)图4(f)相比,图4(e)将林地和开放型区域错分的像素点较多。图4(d)错分的杂点较多,将大部分林地区域错分为开放型区域。对比算法的实验结果图中,图4(e)分类效果最好。

    由实验结果表2可以得到本文算法的总体分类精度为79.74%,分别比Co-Reg, MMC和SR-MO方法高出6.11%, 5.03%和1.52%。Kappa系数和平均分类正确率也优于对比方法。这说明了本文算法对德国Oberpfaffenhofen地区的分类效果较好,地物之间的分界较为清晰,能够识别出农田和道路,以及大部分的林地区域。同时,可以看到本文算法在处理除过道路之外的区域时,分类效果很好,且更加稳定,尤其在图中间的农场区域,分类更为连贯平整,视觉效果好,杂点较少。Co-Reg方法对于道路的误分现象较为严重,大部分道路没有被识别。SR-MO方法能够有效识别大部分的道路、郊区、林地,以及农田,却将大部分的农田误分为郊区,分类效果也不够理想,这是由于仅仅基于判别信息进行分类,没有反映极化数据的统计特征。不过这4类算法对中间道路的分类效果都不是很好,还有很大的改进完善空间,但相对来说本文算法的道路边界更为清晰平滑,视觉效果更好。

    本实验数据为由加拿大太空署RADARSAT-2系统获取的西安地区极化SAR图像,该图像大小为512×512,主要有河流、城区、植被3种地物分类。

    Co-Reg, MMC以及SR-MO 3种不同对比算法和本文算法对西安地区的总体分类精度OA、平均分类精度AA以及Kappa系数如表3所示;分类的结果图如图5所示。

    表  3  4种算法对西安地区的分类结果
    Table  3.  Classification results of four algorithms for Xi’an area
    Co-RegMMCSR-MO本文算法
    河流0.93720.88760.91890.8890
    城区0.73000.66220.81280.8550
    植被0.68760.80520.80060.8555
    OA0.74000.76700.82270.8503
    AA0.72590.75840.81360.8436
    Kappa0.73410.77100.80710.8471
    下载: 导出CSV 
    | 显示表格
    图  5  西安地区数据的伪彩图、类标图以及不同算法的分类结果图
    Figure  5.  Pseudo-color map, class diagram and data classification results of different algorithms in Xi’an area

    图5中,图5(a)是西安地区的Pauli分解伪彩图,图5(b)是地物类标图,图5(c)图5(e)分别是Co-Reg, MMC以及SR-MO算法的分类结果图,图5(f)是本文算法的分类结果图。

    表3可以看出本文算法的总体分类精度为85.03%,分别比Co-Reg, MMC和SR-MO高出11.03%, 8.33%和2.76%,尤其在城区和植被的分类中,本文算法均表现出了良好的性能。从图5的视觉效果上分析,Co-Reg和MMC算法的分类效果较差,通常情况下某一区域内的样本点应属于同一类地物,但这两幅结果图的整个图像充满斑点点,区域内杂点过多。相比之下,SR-MO和本文算法的两幅图视觉效果很好,杂点较少,河流区域分类较好。相比与SR-MO算法,本文算法的城区部分分类较好,能较好地保持区域一致性。

    本节实验美国NASA/JPL AIRSAR系统于1989获得的Flevoland地区四视L波段的大图数据,图像大小为750×1024,分辨率为12.1×6.7 m。包含15类地物:蚕豆、油菜籽、裸地、土豆、甜菜、小麦2、豌豆、小麦3、苜蓿、大麦、小麦、草地、森林、水域和建筑物。设置Ns=15, K=9, 4种不同算法的总体分类精度OA、平均分类精度AA以及Kappa系数如表4所示,不同算法的结果图如图6所示。

    表  4  4种算法对荷兰 Flevoland 地区大农田图的分类结果
    Table  4.  Classification results of four algorithms for large farmland maps in the Flevoland region of the Netherlands
    Co-RegMMCSR-MO本文算法
    蚕豆0.74590.89420.96140.9584
    油菜籽0.13930.71940.70940.8337
    裸地0.20560.96160.95410.9583
    土豆0.24790.89120.87960.9086
    甜菜0.10790.94810.96560.9515
    小麦20.24270.62510.85250.7941
    豌豆0.79320.95170.88870.9571
    小麦30.54120.92310.91800.9300
    苜蓿0.95410.89400.83910.9284
    大麦0.92260.63110.96600.8524
    小麦0.11580.84580.86600.8796
    草地0.39440.64590.74700.8773
    森林0.40410.88330.83290.9122
    水域0.54030.97570.90350.9620
    建筑物0.59540.77610.58650.7912
    OA0.42040.84410.85010.8923
    AA0.41650.83980.86970.9043
    Kappa0.42690.84090.84410.9136
    下载: 导出CSV 
    | 显示表格
    图  6  荷兰 Flevoland 地区大农田数据的伪彩图、类标图以及不同算法的分类结果图
    Figure  6.  Pseudo-color map, class diagram and classification results of different algorithms for large farmland data in the Flevoland region of the Netherlands

    图6中能够看出,图6(c)的杂点最多,区域一致性最差,油菜籽、甜菜和小麦等区域被大量误分为水域,区域之间没有明显区分,分类效果较差。图6(e)整体分类效果较好,但和本算法相比,对边缘像素点的分类效果不太理想。和图6(f)相比,图6(d)图6(e)区域错分的像素点较多,小麦、草地和建筑物等区域均有较多杂点。对比算法的实验结果图中,图6(e)分类效果最好。

    与对比算法相比,本文算法对Flevoland地区大农田的农作物分类的正确率都很高,稳定性很好,没有偏差,尤其在油菜籽、土豆、苜蓿、森林这几类上,分类正确率明显优于其它3种算法。但是本章算法在处理草地和小麦区域时,最终结果并没有达到理想状态,还有进一步提升的空间。但是整体来说,本文算法对比于其他对比算法的分类效果最好,区域一致性较好,边界更清晰,错分点更少。

    在本文方法中有两个权衡参数λ, β和正则项参数ξ。通常的做法是在无监督聚类中根据经验设置参数。下面本节对荷兰Flevoland小农田、德国Oberpfaffenhofen和西安地区数据集进行实验,观察不同值和对总体分类精度的影响,如图7图10所示。可以观察到:

    图  7  荷兰小农田中不同\lambda \beta 下的分类结果图
    Figure  7.  Classification results of different \lambda and \beta below in small Dutch farmland
    图  10  不同正则项参数\xi 的分类结果图
    Figure  10.  Classification results of different regular item parameter \xi

    (1) 在4个不同的数据集中,\lambda \beta 的变化对最终结果的影响曲线基本一致,说明本文算法对不同数据的参数选择较为一致,鲁棒性好。

    (2) 算法的性能在合适的范围只会有较小的变化,即\lambda \beta 的范围都在0.005~1区间。

    (3) 在4组数据集的试验中,\xi 的取值范围在5×10–4~5×10–6范围内对结果的影响都不大,说明算法对正则项参数\xi 不敏感。

    综上所述,本文算法在合适的区间内对其参数相对不敏感,区间内参数的变化对分类总精度影响较小,且参数的可调节的范围较大。因此,本文所提方法有较好的参数稳定性。这使得本文算法易于使用,无需进行太多的权衡参数调优。

    图  8  德国地区中不同\lambda \beta 下的分类结果
    Figure  8.  Classification results for different \lambda and \beta below in the German region
    图  9  西安地区中不同\lambda \beta 下的分类结果图
    Figure  9.  Classification results of different \lambda and \beta subordinates in Xi’an area

    本文提出一种基于马尔科夫的低秩稀疏的判别谱聚类方法。首先构造一个概率转移矩阵用于恢复一个真实的低秩转移概率矩阵作为标准马尔科夫聚类方法的关键输入。然后在目标函数中引入判别信息,达到对数据信息的充分利用。本文采用基于增广拉格朗日乘子法的优化方法来求解低秩和概率单纯形约束下的目标函数。通过应用4种典型的实验数据,证明了本文算法在分类精度、参数敏感性等方面具有优势,最终的分类效果也更好。

  • [1]
    HAYKIN S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30–40. doi: 10.1109/MSP.2006.1593335
    [2]
    GUERCI J R. Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach[M]. London: Artech House, 2010.
    [3]
    王璐璐, 王宏强, 王满喜, 等. 雷达目标检测的最优波形设计综述[J]. 雷达学报, 2016, 5(5): 487–498. doi: 10.12000/JR16084

    WANG Lulu, WANG Hongqiang, WANG Manxi, et al. An overview of radar waveform optimization for target detection[J]. Journal of Radars, 2016, 5(5): 487–498. doi: 10.12000/JR16084
    [4]
    FARINA A, DE MAIO A, and HAYKIN S. The Impact of Cognition on Radar Technology[M]. SciTech Publishing, 2017.
    [5]
    黎湘, 范梅梅. 认知雷达及其关键技术研究进展[J]. 电子学报, 2012, 40(9): 1863–1870. doi: 10.3969/j.issn.0372-2112.2012.09.025

    LI Xiang and FAN Meimei. Research advance on cognitive radar and its key technology[J]. Acta Electronica Sinica, 2012, 40(9): 1863–1870. doi: 10.3969/j.issn.0372-2112.2012.09.025
    [6]
    HAYKIN S, XUE Yanbo, and DAVIDSON T N. Optimal waveform design for cognitive radar[C]. The 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2008: 3–7. doi: 10.1109/ACSSC.2008.5074349.
    [7]
    GINI F, DE MAIO A, and PATTON L K. Waveform Design and Diversity for Advanced Radar Systems[M]. London: IET Press, 2012.
    [8]
    STOICA P, HE Hao, and LI Jian. Optimization of the receive filter and transmit sequence for active sensing[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1730–1740. doi: 10.1109/TSP.2011.2179652
    [9]
    BELL M R. Information theory and radar waveform design[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1578–1597. doi: 10.1109/18.259642
    [10]
    HE Hao, LI Jian, and STOICA P. Waveform Design for Active Sensing Systems: A Computational Approach[M]. Cambridge UK: Cambridge University Press, 2012. doi: 10.1017/CBO9781139095174.
    [11]
    LI J, GUERCI J R, and XU L. Signal waveform’s optimal-under-restriction design for active sensing[J]. IEEE Signal Processing Letters, 2006, 13(9): 565–568. doi: 10.1109/LSP.2006.874465
    [12]
    LI Jian and STOICA P. MIMO Radar Signal Processing[M]. Hoboken, USA: Wiley, 2009.
    [13]
    KAY S. Waveform design for multistatic radar detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1153–1166. doi: 10.1109/TAES.2009.5259190
    [14]
    BERGIN J S, TECHAU P M, DON CARLOS J E, et al. Radar waveform optimization for colored noise mitigation[C]. 2005 IEEE International Radar Conference, Arlington, USA, 2005: 149–154. doi: 10.1109/RADAR.2005.1435810.
    [15]
    AUBRY A, DE MAIO A, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1138–1152. doi: 10.1109/TAES.2014.120731
    [16]
    TANG Bo, LI Jian, and LIANG Junli. Alternating direction method of multipliers for radar waveform design in spectrally crowded environments[J]. Signal Processing, 2018, 142: 398–402. doi: 10.1016/j.sigpro.2017.08.003
    [17]
    GE Peng, CUI Gong, KARBASI S M, et al. Cognitive radar sequence design under the spectral compatibility requirements[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 759–767. doi: 10.1049/iet-rsn.2016.0239
    [18]
    YU Xianxiang, CUI Guolong, GE Peng, et al. Constrained radar waveform design algorithm for spectral coexistence[J]. Electronics Letters, 2017, 53(8): 558–560. doi: 10.1049/el.2016.4524
    [19]
    DE MAIO A, DE NICOLA S, HUANG Yongwei, et al. Code design to optimize radar detection performance under accuracy and similarity constraints[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5618–5629. doi: 10.1109/TSP.2008.929657
    [20]
    DE MAIO A, HUANG Yongwei, and PIEZZO M. A Doppler robust max-min approach to radar code design[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4943–4947. doi: 10.1109/TSP.2010.2050317
    [21]
    DE MAIO A, DE NICOLA S, HUANG Yongwei, et al. Design of phase codes for radar performance optimization with a similarity constraint[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 610–621. doi: 10.1109/TSP.2008.2008247
    [22]
    CUI Guolong, YU Xianxiang, FOGLIA G, et al. Quadratic optimization with similarity constraint for unimodular sequence synthesis[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4756–4769. doi: 10.1109/TSP.2017.2715010
    [23]
    YU Xianxiang, CUI Guolong, FU Yue, et al. Unimodular quadratic optimization with similarity constraint for synthesizing radar codes[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 687–691. doi: 10.1109/RADAR.2017.7944290.
    [24]
    LESHEM A, NAPARSTEK O, and NEHORAI A. Information theoretic adaptive radar waveform design for multiple extended targets[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 42–55. doi: 10.1109/JSTSP.2007.897047
    [25]
    范梅梅, 廖东平, 丁小峰, 等. 基于WLS-TIR的多目标识别认知雷达波形自适应方法[J]. 电子学报, 2012, 40(1): 73–77. doi: 10.3969/j.issn.0372-2112.2012.01.012

    FAN Meimei, LIAO Dongping, DING Xiaofeng, et al. Adaptive waveform design based on WLS-TIR for multiple targets recognition in cognitive radar[J]. Acta Electronica Sinica, 2012, 40(1): 73–77. doi: 10.3969/j.issn.0372-2112.2012.01.012
    [26]
    GOODMAN N A, VENKATA P R, and NEIFELD M A. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 105–113. doi: 10.1109/JSTSP.2007.897053
    [27]
    张劲东. 自适应雷达系统中波形分集技术的研究[D]. [博士论文], 南京理工大学, 2010.

    ZHANG Jindong. Research of waveform diversity in adaptive radar system[D]. [Ph.D. dissertation], Nanjing University of Science and Technology, 2010.
    [28]
    魏轶旻, 孟华东, 毛滔, 等. 基于凸优化方法的认知雷达波形设计[J]. 现代雷达, 2012, 34(3): 18–21. doi: 10.3969/j.issn.1004-7859.2012.03.004

    WEI Yimin, MENG Huadong, MAO Tao, et al. Radar phase-coded waveform design for extended target detection by convex optimization[J]. Modern Radar, 2012, 34(3): 18–21. doi: 10.3969/j.issn.1004-7859.2012.03.004
    [29]
    唐波. 宽带认知雷达低峰均比波形快速设计算法[J]. 航空学报, 2016, 37(2): 688–694. doi: 10.7527/S1000-6893.2015.0125

    TANG Bo. Efficient design algorithm of low PAR waveform for wideband cognitive radar[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 688–694. doi: 10.7527/S1000-6893.2015.0125
    [30]
    TANG Bo and TANG Jun. Robust waveform design of wideband cognitive radar for extended target detection[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016: 3096–3100. doi: 10.1109/ICASSP.2016.7472247.
    [31]
    付月. 稳健的恒模序列设计与处理方法[D]. [硕士论文], 电子科技大学, 2018.

    FU Yue. Robust design and processing method for constant modulus sequences[D]. [Master dissertation], University of Electronic Science and Technology of China, 2018.
    [32]
    LI Jian, XU Luzhou, STOICA P, et al. Range compression and waveform optimization for MIMO radar: A CramÉr-Rao bound based study[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 218–232. doi: 10.1109/TSP.2007.901653
    [33]
    HULEIHEL W, TABRIKIAN J, and SHAVIT R. Optimal adaptive waveform design for cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2013, 61(20): 5075–5089. doi: 10.1109/TSP.2013.2269045
    [34]
    DE MAIO A and LOPS M. Design principles of MIMO radar detectors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 886–898. doi: 10.1109/TAES.2007.4383581
    [35]
    AUBRY A, LOPS M, TULINO A M, et al. On MIMO detection under non-gaussian target scattering[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5822–5838. doi: 10.1109/TIT.2010.2068930
    [36]
    GROSSI E and LOPS M. Space-time code design for MIMO detection based on kullback-leibler divergence[J]. IEEE Transactions on Information Theory, 2012, 58(6): 3989–4004. doi: 10.1109/TIT.2012.2189754
    [37]
    WANG Li, ZHU Wei, ZHANG Yunlei, et al. Multi-target detection and adaptive waveform design for cognitive MIMO radar[J]. IEEE Sensors Journal, 2018, 18(24): 9962–9970. doi: 10.1109/JSEN.2018.2873103
    [38]
    YANG Yang and BLUM R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 330–343. doi: 10.1109/TAES.2007.357137
    [39]
    YANG Yang and BLUM R S. Minimax robust MIMO radar waveform design[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 147–155. doi: 10.1109/JSTSP.2007.897056
    [40]
    TANG Bo, TANG Jun, and PENG Yingning. MIMO radar waveform design in colored noise based on information theory[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4684–4697. doi: 10.1109/TSP.2010.2050885
    [41]
    ZHANG Wenshu and YANG Liuqing. Communications-inspired sensing: A case study on waveform design[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 792–803. doi: 10.1109/TSP.2009.2028941
    [42]
    TANG Bo, TANG Jun, and PENG Yingning. Waveform optimization for MIMO radar in colored noise: Further results for estimation-oriented criteria[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1517–1522. doi: 10.1109/TSP.2011.2177262
    [43]
    王鹏, 崔琛, 张鑫. 色噪声下认知雷达自适应检测波形设计[J]. 电子信息对抗技术, 2013, 28(5): 39–43, 58. doi: 10.3969/j.issn.1674-2230.2013.05.009

    WANG Peng, CUI Chen, and ZHANG Xin. Adaptive waveform design for cognitive radar detection in colored noise[J]. Electronic Information Warfare Technology, 2013, 28(5): 39–43, 58. doi: 10.3969/j.issn.1674-2230.2013.05.009
    [44]
    KAY S. Optimal signal design for detection of Gaussian point targets in stationary Gaussian clutter/reverberation[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 31–41. doi: 10.1109/JSTSP.2007.897046
    [45]
    SIRA S P, COCHRAN D, PAPANDREOU-SUPPAPPOLA A, et al. Adaptive waveform design for improved detection of low-RCS targets in heavy sea clutter[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 56–66. doi: 10.1109/JSTSP.2007.897048
    [46]
    SOLTANALIAN M, TANG Bo, LI Jian, et al. Joint design of the receive filter and transmit sequence for active sensing[J]. IEEE Signal Processing Letters, 2013, 20(5): 423–426. doi: 10.1109/LSP.2013.2250279
    [47]
    AUBRY A, DE MAIO A, PIEZZO M, et al. Cognitive radar waveform design for spectral coexistence in signal-dependent interference[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 474–478. doi: 10.1109/RADAR.2014.6875638.
    [48]
    CHENG Xu, AUBRY A, CIUONZO D, et al. Robust waveform and filter bank design of polarimetric radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 370–384. doi: 10.1109/TAES.2017.2650619
    [49]
    AUBRY A, DE MAIO A, JIANG Bo, et al. Ambiguity function shaping for cognitive radar via complex quartic optimization[J]. IEEE Transactions on Signal Processing, 2013, 61(22): 5603–5619. doi: 10.1109/TSP.2013.2273885
    [50]
    NAGHSH M M, SOLTANALIAN M, STOICA P, et al. A Doppler robust design of transmit sequence and receive filter in the presence of signal-dependent interference[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 772–785. doi: 10.1109/TSP.2013.2288082
    [51]
    AUBRY A, DE MAIO A, and NAGHSH M M. Optimizing radar waveform and Doppler filter bank via generalized fractional programming[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1387–1399. doi: 10.1109/JSTSP.2015.2469259
    [52]
    CUI Guolong, FU Yue, YU Xianxiang, et al. Robust transmitter-receiver design in the presence of signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1871–1882. doi: 10.1109/TAES.2018.2805147
    [53]
    PILLAI S U, OH H S, YOULA D C, et al. Optimal transmit-receiver design in the presence of signal-dependent interference and channel noise[J]. IEEE Transactions on Information Theory, 2000, 46(2): 577–584. doi: 10.1109/18.825822
    [54]
    ROMERO R A, BAE J, and GOODMAN N A. Theory and application of SNR and mutual information matched illumination waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 912–927. doi: 10.1109/TAES.2011.5751234
    [55]
    纠博, 刘宏伟, 李丽亚, 等. 雷达波形优化的特征互信息方法[J]. 西安电子科技大学学报: 自然科学版, 2009, 36(1): 139–144. doi: 10.3969/j.issn.1001-2400.2009.01.026

    JIU Bo, LIU Hongwei, LI Liya, et al. Feature mutual information method for radar waveform optimization[J]. Journal of Xidian University, 2009, 36(1): 139–144. doi: 10.3969/j.issn.1001-2400.2009.01.026
    [56]
    郝天铎, 崔琛, 龚阳, 等. 基于凸优化方法的认知雷达低峰均比波形设计[J]. 雷达学报, 2018, 7(4): 498–506. doi: 10.12000/JR18002

    HAO Tianduo, CUI Chen, GONG Yang, et al. Waveform design for cognitive radar under low PAR constraints by convex optimization[J]. Journal of Radars, 2018, 7(4): 498–506. doi: 10.12000/JR18002
    [57]
    CUI Guolong, FU Yue, YU Xianxiang, et al. Robust transmitter-receiver design for extended target in signal-dependent interference[J]. Signal Processing, 2018, 147: 60–67. doi: 10.1016/j.sigpro.2018.01.007
    [58]
    FRIEDLANDER B. Waveform design for MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1227–1238. doi: 10.1109/TAES.2007.4383615
    [59]
    DULY A J, LOVE D J, and KROGMEIER J V. Time-division beamforming for MIMO radar waveform design[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1210–1223. doi: 10.1109/TAES.2013.6494408
    [60]
    CUI Guolong, LI Hongbin, and RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 343–353. doi: 10.1109/TSP.2013.2288086
    [61]
    CHENG Ziyang, HE Zishu, LIAO Bin, et al. MIMO radar waveform design with PAPR and similarity constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 968–981. doi: 10.1109/TSP.2017.2780052
    [62]
    IMANI S and ALI GHORASHI S. Sequential quasi-convex-based algorithm for waveform design in colocated multiple-input multiple-output radars[J]. IET Signal Processing, 2016, 10(3): 309–317. doi: 10.1049/iet-spr.2015.0181
    [63]
    JIU Bo, LIU Hongwei, WANG Xu, et al. Knowledge-based spatial-temporal hierarchical MIMO radar waveform design method for target detection in heterogeneous clutter zone[J]. IEEE Transactions on Signal Processing, 2015, 63(3): 543–554. doi: 10.1109/TSP.2014.2366714
    [64]
    NAGHSH M M, MODARRES-HASHEMI M, KERAHROODI M A, et al. An information theoretic approach to robust constrained code design for MIMO radars[J]. IEEE Transactions on Signal Processing, 2017, 65(14): 3647–3661. doi: 10.1109/TSP.2017.2692747
    [65]
    WANG Yuxi, LI Wei, SUN Qilu, et al. A robust joint design of transmit waveform and receive filter for MIMO radar space-time adaptive processing with signal-dependent interferences[J]. IET Radar, Sonar & Navigation, 2017, 11(8): 1321–1332. doi: 10.1049/iet-rsn.2016.0514
    [66]
    TANG Bo and TANG Jun. Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707–4722. doi: 10.1109/TSP.2016.2569431
    [67]
    LIU Yuchun, WANG Hongyan, and WANG Jun. Robust multiple-input multiple-output radar waveform design in the presence of clutter[J]. IET Radar, Sonar & Navigation, 2016, 10(7): 1249–1259. doi: 10.1049/iet-rsn.2015.0497
    [68]
    ZHU Wei and TANG Jun. Robust design of transmit waveform and receive filter for colocated MIMO radar[J]. IEEE Signal Processing Letters, 2015, 22(11): 2112–2116. doi: 10.1109/LSP.2015.2461460
    [69]
    YU Xianxiang, CUI Guolong, KONG Lingjiang, et al. Constrained waveform design for colocated MIMO radar with uncertain steering matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 356–370. doi: 10.1109/TAES.2018.2852200
    [70]
    YU Xianxiang, CUI Guolong, PIEZZO M, et al. Robust constrained waveform design for MIMO radar with uncertain steering vectors[J]. EURASIP Journal on Advances in Signal Processing, 2017, 2017(1): 2. doi: 10.1186/s13634-016-0437-9
    [71]
    KARBASI S M, AUBRY A, CAROTENUTO V, et al. Knowledge-based design of space-time transmit code and receive filter for a multiple-input-multiple-output radar in signal-dependent interference[J]. IET Radar, Sonar & Navigation, 2015, 9(8): 1124–1135. doi: 10.1049/iet-rsn.2014.0527
    [72]
    CUI Guolong, YU Xianxiang, CAROTENUTO V, et al. Space-time transmit code and receive filter design for colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2017, 65(5): 1116–1129. doi: 10.1109/TSP.2016.2633242
    [73]
    CHEN Chunyang and VAIDYANATHAN P P. MIMO radar waveform optimization with prior information of the extended target and clutter[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3533–3544. doi: 10.1109/TSP.2009.2021632
    [74]
    KARBASI S M, RADMARD M, NAYEBI M M, et al. Design of multiple-input multiple-output transmit waveform and receive filter for extended target detection[J]. IET Radar, Sonar & Navigation, 2015, 9(9): 1345–1353. doi: 10.1049/iet-rsn.2015.0063
    [75]
    NAGHIBI T and BEHNIA F. MIMO radar waveform design in the presence of clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 770–781. doi: 10.1109/TAES.2011.5751224
    [76]
    TANG Bo and LI Jian. Spectrally constrained MIMO radar waveform design based on mutual information[J]. IEEE Transactions on Signal Processing, 2019, 67(3): 821–834. doi: 10.1109/TSP.2018.2887186
    [77]
    CUI Guolong, YU Xianxiang, YANG Ya, et al. Cognitive phase-only sequence design with desired correlation and stopband properties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2924–2935. doi: 10.1109/TAES.2017.2721238
    [78]
    ZHAO Licheng, SONG Junxiao, BABU P, et al. A unified framework for low autocorrelation sequence design via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2017, 65(2): 438–453. doi: 10.1109/TSP.2016.2620113
    [79]
    HE Hao, STOICA P, and LI Jian. On synthesizing cross ambiguity functions[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011: 3536–3539. doi: 10.1109/ICASSP.2011.5946241.
    [80]
    ZHANG Jindong, SHI Changli, QIU Xiaoyan, et al. Shaping radar ambiguity function by L-phase unimodular sequence[J]. IEEE Sensors Journal, 2016, 16(14): 5648–5659. doi: 10.1109/JSEN.2016.2567643
    [81]
    ALAEE-KERAHROODI M, SEDIGHI S, SHANKAR M R B, et al. Designing (in)finite-alphabet sequences via shaping the radar ambiguity function[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, United Kingdom, 2019: 4295–4299. doi: 10.1109/ICASSP.2019.8682216.
    [82]
    FENG Xiang, ZHAO Yinan, ZHOU Zhiquan, et al. Waveform design with low range sidelobe and high Doppler tolerance for cognitive radar[J]. Signal Processing, 2017, 139: 143–155. doi: 10.1016/j.sigpro.2017.04.014
    [83]
    ARLERY F, KASSAB R, TAN U, et al. Efficient gradient method for locally optimizing the periodic/aperiodic ambiguity function[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485309.
    [84]
    CUI Guolong, FU Yue, YU Xianxiang, et al. Local ambiguity function shaping via unimodular sequence design[J]. IEEE Signal Processing Letters, 2017, 24(7): 977–981. doi: 10.1109/LSP.2017.2700396
    [85]
    JING Yang, LIANG Junli, TANG Bo, et al. Designing unimodular sequence with low peak of sidelobe level of local ambiguity function[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1393–1406. doi: 10.1109/TAES.2018.2870459
    [86]
    YANG Jing, CUI Guolong, YU Xianxiang, et al. Cognitive local ambiguity function shaping with spectral coexistence[J]. IEEE Access, 2018, 6: 50077–50086. doi: 10.1109/ACCESS.2018.2868884
    [87]
    CUI Guolong, YU Xianxiang, PIEZZO M, et al. Constant modulus sequence set design with good correlation properties[J]. Signal Processing, 2017, 139: 75–85. doi: 10.1016/j.sigpro.2017.04.009
    [88]
    LI Yongzhe and VOROBYOV S A. Fast algorithms for designing unimodular waveform(s) with good correlation properties[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1197–1212. doi: 10.1109/TSP.2017.2787104
    [89]
    YU Guoyang, LIANG Junli, LI Jian, et al. Sequence set design with accurately controlled correlation properties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 3032–3046. doi: 10.1109/TAES.2018.2836778
    [90]
    GERLACH K. Thinned spectrum ultrawideband waveforms using stepped-frequency polyphase codes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1356–1361. doi: 10.1109/7.722721
    [91]
    FAUST H H, CONNOLLY B, FIRESTONE T M, et al. A spectrally clean transmitting system for solid-state phased-array radars[C]. 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 140–144. doi: 10.1109/NRC.2004.1316410.
    [92]
    DE GRAAF J, FAUST H, ALATISHE J, et al. Generation of spectrally confined transmitted radar waveforms: Experimental results[C]. 2006 IEEE Radar Conference, Verona, USA, 2006: 76–83. doi: 10.1109/RADAR.2006.1631779.
    [93]
    SELESNICK I W, PILLAI S U, and ZHENG Richeng. An iterative algorithm for the construction of notched chirp signals[C]. Proceedings of 2010 IEEE Radar Conference, Washington, USA, 2010: 200–203. doi: 10.1109/RADAR.2010.5494625.
    [94]
    LINDENFELD M J. Sparse frequency transmit-and-receive waveform design[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 851–861. doi: 10.1109/TAES.2004.1337459
    [95]
    LIU W X, LU Y L, and LESTURGIE M. Optimal sparse waveform design for HFSWR system[C]. 2007 International Waveform Diversity and Design Conference, Pisa, Italy, 2007: 127–130. doi: 10.1109/WDDC.2007.4339394.
    [96]
    WANG Guohua, MAI Chaoyun, SUN Jinping, et al. Sparse frequency waveform analysis and design based on ambiguity function theory[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 707–717. doi: 10.1049/iet-rsn.2015.0270
    [97]
    ROWE W, STOICA P, and LI Jian. Spectrally constrained waveform design[J]. IEEE Signal Processing Magazine, 2014, 31(3): 157–162. doi: 10.1109/MSP.2014.2301792
    [98]
    LIANG Junli, SO H C, LEUNG CS, et al. Waveform design with unit modulus and spectral shape constraints via lagrange programming neural network[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1377–1386. doi: 10.1109/JSTSP.2015.2464178
    [99]
    TANG Bo and LIANG Junli. Efficient algorithms for synthesizing probing waveforms with desired spectral shapes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1174–1189. doi: 10.1109/TAES.2018.2876585
    [100]
    GE Peng, CUI Guolong, KARBASI S M, et al. A template fitting approach for cognitive unimodular sequence design[J]. Signal Processing, 2016, 128: 360–368. doi: 10.1016/j.sigpro.2016.05.008
    [101]
    YANG Jing, CUI Guolong, YU Xianxiang, et al. Waveform design with spectral coexistence[C]. 2019 IEEE Radar Conference, Boston, USA, 2019. doi: 10.1109/RADAR.2019.8835848.
    [102]
    FUHRMANN D R and SAN ANTONIO G. Transmit beamforming for MIMO radar systems using partial signal correlation[C]. 2004 Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2004. doi: 10.1109/ACSSC.2004.1399140.
    [103]
    STOICA P, LI Jian, and XIE Yao. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151–4161. doi: 10.1109/TSP.2007.894398
    [104]
    AHMED S, THOMPSON J S, PETILLOT Y R, et al. Unconstrained synthesis of covariance matrix for MIMO radar transmit beampattern[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3837–3849. doi: 10.1109/TSP.2011.2153200
    [105]
    HUA Guang and ABEYSEKERA S S. MIMO radar transmit beampattern design with ripple and transition band control[J]. IEEE Transactions on Signal Processing, 2013, 61(11): 2963–2974. doi: 10.1109/TSP.2013.2252173
    [106]
    LIPOR J, AHMED S, and ALOUINI M S. Fourier-based transmit beampattern design using MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2226–2235. doi: 10.1109/TSP.2014.2307838
    [107]
    GONG Pengcheng, SHAO Zhenhai, TU Guangpeng, et al. Transmit beampattern design based on convex optimization for MIMO radar systems[J]. Signal Processing, 2014, 94: 195–201. doi: 10.1016/j.sigpro.2013.06.021
    [108]
    YU Xianxiang, CUI Guolong, ZHANG Tianxian, et al. Constrained transmit beampattern design for colocated MIMO radar[J]. Signal Processing, 2018, 144: 145–154. doi: 10.1016/j.sigpro.2017.10.010
    [109]
    STOICA P, LI Jian, and ZHU Xumin. Waveform synthesis for diversity-based transmit beampattern design[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2593–2598. doi: 10.1109/TSP.2007.916139
    [110]
    WANG Yongchao, WANG Xu, LIU Hongwei, et al. On the design of constant modulus probing signals for MIMO radar[J]. IEEE Transactions on Signal Processing, 2012, 60(8): 4432–4438. doi: 10.1109/TSP.2012.2197615
    [111]
    AHMED S and ALOUINI M S. MIMO radar transmit beampattern design without synthesising the covariance matrix[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2278–2289. doi: 10.1109/TSP.2014.2310435
    [112]
    SOLTANALIAN M, HU Heng, and STOICA P. Single-stage transmit beamforming design for MIMO radar[J]. Signal Processing, 2014, 102: 132–138. doi: 10.1016/j.sigpro.2014.03.013
    [113]
    ZHANG Xiaojun, HE Zishu, RAYMAN-BACCHUS L, et al. MIMO radar transmit beampattern matching design[J]. IEEE Transactions on Signal Processing, 2015, 63(8): 2049–2056. doi: 10.1109/TSP.2015.2398841
    [114]
    CHENG Ziyang, HAN Chunlin, LIAO Bin, et al. Communication-aware waveform design for MIMO radar with good transmit beampattern[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5549–5562. doi: 10.1109/TSP.2018.2868042
    [115]
    FAN Wen, LIANG Junli, and LI Jian. Constant modulus MIMO radar waveform design with minimum peak sidelobe transmit beampattern[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4207–4222. doi: 10.1109/TSP.2018.2847636
    [116]
    HE Hao, STOICA P, and LI Jian. Wideband MIMO systems: Signal design for transmit beampattern synthesis[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 618–628. doi: 10.1109/TSP.2010.2091410
    [117]
    ALDAYEL O, MONGA V, and RANGASWAMY M. Tractable transmit MIMO beampattern design under a constant modulus constraint[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2588–2599. doi: 10.1109/TSP.2017.2664040
    [118]
    MCCORMICK P M, BLUNT S D, and METCALF J G. Wideband MIMO frequency-modulated emission design with space-frequency nulling[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 363–378. doi: 10.1109/JSTSP.2016.2627180
    [119]
    YU Xianxiang, CUI Guolong, YANG Jing, et al. Wideband MIMO radar waveform design[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3487–3501. doi: 10.1109/TSP.2019.2916732
    [120]
    CUI Guolong, YANG Jing, LU Shuping, et al. Dual-use unimodular sequence design via frequency nulling modulation[J]. IEEE Access, 2018, 6: 62470–62481. doi: 10.1109/ACCESS.2018.2876644
    [121]
    LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890
    [122]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667
  • Relative Articles

    [1]XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183
    [2]WU Junjie, SUN Zhichao, LV Zheng, YANG Jianyu, LI Caipin, SUN Huarui, CHEN Tianfu, ZHAO Liangbo, REN Hang, ZHUANG Chaoran. Bi/multi-static Synthetic Aperture Radar Using Spaceborne Illuminator[J]. Journal of Radars, 2023, 12(1): 13-35. doi: 10.12000/JR22213
    [3]WANG Yanfei, LI Heping, HAN Song. Synthetic Aperture Imaging of Antenna Array Coded[J]. Journal of Radars, 2023, 12(1): 1-12. doi: 10.12000/JR23011
    [4]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [5]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [6]LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [7]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [8]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [9]ZHANG Jinsong, XING Mengdao, SUN Guangcai. A Water Segmentation Algorithm for SAR Image Based on Dense Depthwise Separable Convolution[J]. Journal of Radars, 2019, 8(3): 400-412. doi: 10.12000/JR19008
    [10]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [11]LI Jun, WANG Guanyong, WEI Lideng, LU Yaobing, HU Qingrong. Radar Mapping Technology Based on Millimeter-wave Multi-baseline InSAR[J]. Journal of Radars, 2019, 8(6): 820-830. doi: 10.12000/JR19098
    [12]Zhang Bin, Wei Lideng, Hu Qingrong, Li Shuang. Solution to Layover Problemin Airborne Multi-baseline SAR Based on Spectrum Estimation with Fourth-order Cumulant[J]. Journal of Radars, 2018, 7(6): 740-749. doi: 10.12000/JR18087
    [13]Kuang Hui, Yang Wei, Wang Pengbo, Chen Jie. Three-dimensional Imaging Algorithm for Multi-azimuth-angle Multi-baseline Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2018, 7(6): 685-695. doi: 10.12000/JR18073
    [14]Zhao Junxiang, Liang Xingdong, Li Yanlei. Change Detection in SAR CCD Based on the Likelihood Change Statistics[J]. Journal of Radars, 2017, 6(2): 186-194. doi: 10.12000/JR16065
    [15]Si Qi, Wang Yu, Deng Yunkai, Li Ning, Zhang Heng. A Novel Cluster-Analysis Algorithm Based on MAP Framework for Multi-baseline InSAR Height Reconstruction[J]. Journal of Radars, 2017, 6(6): 640-652. doi: 10.12000/JR17043
    [16]Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [17]Zhao Tuan, Deng Yunkai, Wang Yu, Li Ning, Wang Xiangyu. Processing Sliding Mosaic Mode Data with Modified Full-Aperture Imaging Algorithm Integrating Scalloping Correction[J]. Journal of Radars, 2016, 5(5): 548-557. doi: 10.12000/JR16014
    [18]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
    [19]Li Hai-ying, Zhang Shan-shan, Li Shi-qiang, Zhang Hua-chun. Coherent Performance Analysis of the HJ-1-C Synthetic Aperture Radar[J]. Journal of Radars, 2014, 3(3): 320-325. doi: 10.3724/SP.J.1300.2014.13060
    [20]Zhang Wen-bin, Deng Yun-kai, Wang Yu. A Fast Back Projection Algorithm for Spotlight Mode Bi-SAR Imaging[J]. Journal of Radars, 2013, 2(3): 357-366. doi: 10.3724/SP.J.1300.2013.13031
  • Cited by

    Periodical cited type(1)

    1. 陈园园,张晓丽,高显连,高金萍. 基于Sentinel-1和Sentinel-2A的西小山林场平均树高估测. 应用生态学报. 2021(08): 2839-2846 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.7 %FULLTEXT: 24.7 %META: 69.8 %META: 69.8 %PDF: 5.6 %PDF: 5.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.8 %其他: 3.8 %其他: 0.5 %其他: 0.5 %Bolivia: 0.1 %Bolivia: 0.1 %Chile: 0.1 %Chile: 0.1 %China: 0.9 %China: 0.9 %France: 0.0 %France: 0.0 %India: 0.0 %India: 0.0 %Indianapolis: 0.1 %Indianapolis: 0.1 %Japan: 0.1 %Japan: 0.1 %Kao-sung: 0.1 %Kao-sung: 0.1 %Kochi: 0.1 %Kochi: 0.1 %Seattle: 0.0 %Seattle: 0.0 %Singapore: 0.1 %Singapore: 0.1 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Twinsburg: 0.1 %Twinsburg: 0.1 %Ulan-Ude: 0.1 %Ulan-Ude: 0.1 %United Kingdom: 0.0 %United Kingdom: 0.0 %United States: 0.5 %United States: 0.5 %[]: 0.8 %[]: 0.8 %上海: 1.2 %上海: 1.2 %东京: 0.2 %东京: 0.2 %东京都: 0.1 %东京都: 0.1 %东莞: 0.1 %东莞: 0.1 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.0 %临沂: 0.0 %丹东: 0.0 %丹东: 0.0 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %京都府: 0.0 %京都府: 0.0 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %伦敦: 0.0 %伦敦: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.0 %兰辛: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %包头: 0.0 %包头: 0.0 %北京: 12.7 %北京: 12.7 %十堰: 0.1 %十堰: 0.1 %南京: 1.4 %南京: 1.4 %南充: 0.1 %南充: 0.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.2 %南昌: 0.2 %南通: 0.0 %南通: 0.0 %南阳: 0.5 %南阳: 0.5 %台中: 0.0 %台中: 0.0 %台北: 0.2 %台北: 0.2 %台州: 0.0 %台州: 0.0 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸宁: 0.0 %咸宁: 0.0 %哈密: 0.0 %哈密: 0.0 %哈尔滨: 0.4 %哈尔滨: 0.4 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %大庆: 0.0 %大庆: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.7 %天津: 0.7 %太原: 0.1 %太原: 0.1 %安卡拉: 0.0 %安卡拉: 0.0 %安康: 0.1 %安康: 0.1 %安顺: 0.1 %安顺: 0.1 %宜昌: 0.0 %宜昌: 0.0 %宣城: 0.2 %宣城: 0.2 %岳阳: 0.1 %岳阳: 0.1 %巴塞罗那: 0.0 %巴塞罗那: 0.0 %布鲁塞尔: 0.0 %布鲁塞尔: 0.0 %广州: 0.5 %广州: 0.5 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.0 %延安: 0.0 %开封: 0.1 %开封: 0.1 %弗吉: 0.1 %弗吉: 0.1 %张家口: 0.7 %张家口: 0.7 %徐州: 0.4 %徐州: 0.4 %德州: 0.1 %德州: 0.1 %怀化: 0.0 %怀化: 0.0 %意法半: 0.0 %意法半: 0.0 %成都: 1.1 %成都: 1.1 %扬州: 0.2 %扬州: 0.2 %新泽西州: 0.0 %新泽西州: 0.0 %无锡: 0.0 %无锡: 0.0 %昆明: 0.6 %昆明: 0.6 %晋城: 0.2 %晋城: 0.2 %本溪: 0.0 %本溪: 0.0 %杭州: 0.5 %杭州: 0.5 %株洲: 0.1 %株洲: 0.1 %桂林: 0.2 %桂林: 0.2 %森尼韦尔: 0.1 %森尼韦尔: 0.1 %横滨: 0.1 %横滨: 0.1 %武威: 0.2 %武威: 0.2 %武汉: 1.7 %武汉: 1.7 %江门: 0.1 %江门: 0.1 %沈阳: 0.3 %沈阳: 0.3 %法尔肯施泰因: 0.1 %法尔肯施泰因: 0.1 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.2 %济南: 0.2 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %淮北: 0.0 %淮北: 0.0 %淮南: 0.0 %淮南: 0.0 %深圳: 0.6 %深圳: 0.6 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %湘西: 0.1 %湘西: 0.1 %漯河: 0.4 %漯河: 0.4 %烟台: 0.1 %烟台: 0.1 %爱知: 0.1 %爱知: 0.1 %珀斯: 0.1 %珀斯: 0.1 %石家庄: 0.1 %石家庄: 0.1 %神奈川: 0.1 %神奈川: 0.1 %福州: 0.1 %福州: 0.1 %纽约: 0.1 %纽约: 0.1 %绥化: 0.1 %绥化: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 15.7 %芒廷维尤: 15.7 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.5 %苏州: 0.5 %莫斯科: 0.1 %莫斯科: 0.1 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.0 %衢州: 0.0 %西宁: 39.2 %西宁: 39.2 %西安: 1.2 %西安: 1.2 %诺伊达: 0.0 %诺伊达: 0.0 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.1 %费利蒙: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.5 %运城: 0.5 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.4 %郑州: 1.4 %酒泉: 0.0 %酒泉: 0.0 %重庆: 0.2 %重庆: 0.2 %铁岭: 0.0 %铁岭: 0.0 %银川: 0.1 %银川: 0.1 %长春: 0.4 %长春: 0.4 %长沙: 1.8 %长沙: 1.8 %长沙市岳麓区: 0.1 %长沙市岳麓区: 0.1 %阜新: 0.3 %阜新: 0.3 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.3 %青岛: 0.3 %香港: 0.0 %香港: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %鲁贝: 0.0 %鲁贝: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %其他其他BoliviaChileChinaFranceIndiaIndianapolisJapanKao-sungKochiSeattleSingaporeTaiwan, ChinaTwinsburgUlan-UdeUnited KingdomUnited States[]上海东京东京都东莞中卫临汾临沂丹东乌鲁木齐京都府伊利诺伊州伦敦佛山保定兰州兰辛凤凰城包头北京十堰南京南充南宁南昌南通南阳台中台北台州台湾省合肥呼和浩特咸宁哈密哈尔滨哥伦布嘉兴大庆大连天津太原安卡拉安康安顺宜昌宣城岳阳巴塞罗那布鲁塞尔广州库比蒂诺廊坊延安开封弗吉张家口徐州德州怀化意法半成都扬州新泽西州无锡昆明晋城本溪杭州株洲桂林森尼韦尔横滨武威武汉江门沈阳法尔肯施泰因泰米尔纳德洛阳济南海口淄博淮北淮南深圳温州渭南湖州湘潭湘西漯河烟台爱知珀斯石家庄神奈川福州纽约绥化美国伊利诺斯芝加哥舟山芒廷维尤芝加哥苏州莫斯科衡阳衢州西宁西安诺伊达诺沃克贵阳费利蒙达州运城邢台邯郸郑州酒泉重庆铁岭银川长春长沙长沙市岳麓区阜新阳泉青岛香港香港特别行政区鲁贝齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(8424) PDF downloads(1163) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    • 表  1  4种算法对Flevoland小农田图的分类结果
      Table  1.  Classification results of four algorithms for Flevoland small farmland map
      裸土土豆甜菜大麦豌豆小麦OAAAKappa
      Co-Reg0.88600.94520.75510.79060.82620.89600.84000.84980.8775
      MMC0.91800.95800.72420.96230.87560.69940.87080.83960.9005
      SR-MO0.90340.90490.88450.95610.83620.95540.91300.90670.9331
      本文算法0.90480.90880.88340.96040.89200.93820.92430.91460.9418
      下载: 导出CSV 
      | 显示表格
    • 表  2  4种算法对德国Oberpfaffenhofen地区的分类结果
      Table  2.  Classification results of four algorithms for the Oberpfaffenhofen region of Germany
      Co-RegMMCSR-MO本文算法
      农田0.61110.60180.68590.7016
      居民区0.60720.65210.73360.7389
      林地0.81620.79930.90550.9108
      道路0.53110.56810.60490.6418
      其他0.87910.87890.86730.8814
      OA0.73630.74710.78220.7974
      AA0.68890.70000.75940.7749
      Kappa0.61700.63480.69200.7205
      下载: 导出CSV 
      | 显示表格
    • 表  3  4种算法对西安地区的分类结果
      Table  3.  Classification results of four algorithms for Xi’an area
      Co-RegMMCSR-MO本文算法
      河流0.93720.88760.91890.8890
      城区0.73000.66220.81280.8550
      植被0.68760.80520.80060.8555
      OA0.74000.76700.82270.8503
      AA0.72590.75840.81360.8436
      Kappa0.73410.77100.80710.8471
      下载: 导出CSV 
      | 显示表格
    • 表  4  4种算法对荷兰 Flevoland 地区大农田图的分类结果
      Table  4.  Classification results of four algorithms for large farmland maps in the Flevoland region of the Netherlands
      Co-RegMMCSR-MO本文算法
      蚕豆0.74590.89420.96140.9584
      油菜籽0.13930.71940.70940.8337
      裸地0.20560.96160.95410.9583
      土豆0.24790.89120.87960.9086
      甜菜0.10790.94810.96560.9515
      小麦20.24270.62510.85250.7941
      豌豆0.79320.95170.88870.9571
      小麦30.54120.92310.91800.9300
      苜蓿0.95410.89400.83910.9284
      大麦0.92260.63110.96600.8524
      小麦0.11580.84580.86600.8796
      草地0.39440.64590.74700.8773
      森林0.40410.88330.83290.9122
      水域0.54030.97570.90350.9620
      建筑物0.59540.77610.58650.7912
      OA0.42040.84410.85010.8923
      AA0.41650.83980.86970.9043
      Kappa0.42690.84090.84410.9136
      下载: 导出CSV 
      | 显示表格