Volume 8 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072
Citation: CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072

An Overview of Waveform Optimization Methods for Cognitive Radar

DOI: 10.12000/JR19072
Funds:  The National Natural Science Foundation of China (61771109, 61871080), The Changjiang Scholar Program, 111 Project (B17008), The Fundamental Research Funds for the Central Universities (2672018ZYGX2018J016)
More Information
  • Corresponding author: CUI Guolong, cuiguolong@uestc.edu.cn
  • Received Date: 2019-08-01
  • Rev Recd Date: 2019-10-06
  • Available Online: 2019-10-18
  • Publish Date: 2019-10-01
  • Cognitive radar can sense the battlefield environment and feed this information back to a transmitter by imitating the cognitive learning process of bats to enable self-adaptive detection and processing, which are vital for the future intelligent development of radar. Therein, full utilization of the prior information of the target and environment to design radar waveform for improving the performance of target detection, tracking, and anti-jamming is difficult and has been the focus of cognitive radar development. Therefore, based on different jamming environments, target models, and antenna configurations (e.g., Single Input Single Output (SISO) and Multiple Inputs Multiple Outputs (MIMO)), this study summarizes the key elements and main ideas of waveform design. Furthermore, this study lists the related literature on representativeness from the viewpoint of the use of different jamming environments and target models, aiming at providing reference and basis for cognitive waveform design research in the future.

     

  • loading
  • [1]
    HAYKIN S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30–40. doi: 10.1109/MSP.2006.1593335
    [2]
    GUERCI J R. Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach[M]. London: Artech House, 2010.
    [3]
    王璐璐, 王宏强, 王满喜, 等. 雷达目标检测的最优波形设计综述[J]. 雷达学报, 2016, 5(5): 487–498. doi: 10.12000/JR16084

    WANG Lulu, WANG Hongqiang, WANG Manxi, et al. An overview of radar waveform optimization for target detection[J]. Journal of Radars, 2016, 5(5): 487–498. doi: 10.12000/JR16084
    [4]
    FARINA A, DE MAIO A, and HAYKIN S. The Impact of Cognition on Radar Technology[M]. SciTech Publishing, 2017.
    [5]
    黎湘, 范梅梅. 认知雷达及其关键技术研究进展[J]. 电子学报, 2012, 40(9): 1863–1870. doi: 10.3969/j.issn.0372-2112.2012.09.025

    LI Xiang and FAN Meimei. Research advance on cognitive radar and its key technology[J]. Acta Electronica Sinica, 2012, 40(9): 1863–1870. doi: 10.3969/j.issn.0372-2112.2012.09.025
    [6]
    HAYKIN S, XUE Yanbo, and DAVIDSON T N. Optimal waveform design for cognitive radar[C]. The 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2008: 3–7. doi: 10.1109/ACSSC.2008.5074349.
    [7]
    GINI F, DE MAIO A, and PATTON L K. Waveform Design and Diversity for Advanced Radar Systems[M]. London: IET Press, 2012.
    [8]
    STOICA P, HE Hao, and LI Jian. Optimization of the receive filter and transmit sequence for active sensing[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1730–1740. doi: 10.1109/TSP.2011.2179652
    [9]
    BELL M R. Information theory and radar waveform design[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1578–1597. doi: 10.1109/18.259642
    [10]
    HE Hao, LI Jian, and STOICA P. Waveform Design for Active Sensing Systems: A Computational Approach[M]. Cambridge UK: Cambridge University Press, 2012. doi: 10.1017/CBO9781139095174.
    [11]
    LI J, GUERCI J R, and XU L. Signal waveform’s optimal-under-restriction design for active sensing[J]. IEEE Signal Processing Letters, 2006, 13(9): 565–568. doi: 10.1109/LSP.2006.874465
    [12]
    LI Jian and STOICA P. MIMO Radar Signal Processing[M]. Hoboken, USA: Wiley, 2009.
    [13]
    KAY S. Waveform design for multistatic radar detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1153–1166. doi: 10.1109/TAES.2009.5259190
    [14]
    BERGIN J S, TECHAU P M, DON CARLOS J E, et al. Radar waveform optimization for colored noise mitigation[C]. 2005 IEEE International Radar Conference, Arlington, USA, 2005: 149–154. doi: 10.1109/RADAR.2005.1435810.
    [15]
    AUBRY A, DE MAIO A, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1138–1152. doi: 10.1109/TAES.2014.120731
    [16]
    TANG Bo, LI Jian, and LIANG Junli. Alternating direction method of multipliers for radar waveform design in spectrally crowded environments[J]. Signal Processing, 2018, 142: 398–402. doi: 10.1016/j.sigpro.2017.08.003
    [17]
    GE Peng, CUI Gong, KARBASI S M, et al. Cognitive radar sequence design under the spectral compatibility requirements[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 759–767. doi: 10.1049/iet-rsn.2016.0239
    [18]
    YU Xianxiang, CUI Guolong, GE Peng, et al. Constrained radar waveform design algorithm for spectral coexistence[J]. Electronics Letters, 2017, 53(8): 558–560. doi: 10.1049/el.2016.4524
    [19]
    DE MAIO A, DE NICOLA S, HUANG Yongwei, et al. Code design to optimize radar detection performance under accuracy and similarity constraints[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5618–5629. doi: 10.1109/TSP.2008.929657
    [20]
    DE MAIO A, HUANG Yongwei, and PIEZZO M. A Doppler robust max-min approach to radar code design[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4943–4947. doi: 10.1109/TSP.2010.2050317
    [21]
    DE MAIO A, DE NICOLA S, HUANG Yongwei, et al. Design of phase codes for radar performance optimization with a similarity constraint[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 610–621. doi: 10.1109/TSP.2008.2008247
    [22]
    CUI Guolong, YU Xianxiang, FOGLIA G, et al. Quadratic optimization with similarity constraint for unimodular sequence synthesis[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4756–4769. doi: 10.1109/TSP.2017.2715010
    [23]
    YU Xianxiang, CUI Guolong, FU Yue, et al. Unimodular quadratic optimization with similarity constraint for synthesizing radar codes[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 687–691. doi: 10.1109/RADAR.2017.7944290.
    [24]
    LESHEM A, NAPARSTEK O, and NEHORAI A. Information theoretic adaptive radar waveform design for multiple extended targets[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 42–55. doi: 10.1109/JSTSP.2007.897047
    [25]
    范梅梅, 廖东平, 丁小峰, 等. 基于WLS-TIR的多目标识别认知雷达波形自适应方法[J]. 电子学报, 2012, 40(1): 73–77. doi: 10.3969/j.issn.0372-2112.2012.01.012

    FAN Meimei, LIAO Dongping, DING Xiaofeng, et al. Adaptive waveform design based on WLS-TIR for multiple targets recognition in cognitive radar[J]. Acta Electronica Sinica, 2012, 40(1): 73–77. doi: 10.3969/j.issn.0372-2112.2012.01.012
    [26]
    GOODMAN N A, VENKATA P R, and NEIFELD M A. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 105–113. doi: 10.1109/JSTSP.2007.897053
    [27]
    张劲东. 自适应雷达系统中波形分集技术的研究[D]. [博士论文], 南京理工大学, 2010.

    ZHANG Jindong. Research of waveform diversity in adaptive radar system[D]. [Ph.D. dissertation], Nanjing University of Science and Technology, 2010.
    [28]
    魏轶旻, 孟华东, 毛滔, 等. 基于凸优化方法的认知雷达波形设计[J]. 现代雷达, 2012, 34(3): 18–21. doi: 10.3969/j.issn.1004-7859.2012.03.004

    WEI Yimin, MENG Huadong, MAO Tao, et al. Radar phase-coded waveform design for extended target detection by convex optimization[J]. Modern Radar, 2012, 34(3): 18–21. doi: 10.3969/j.issn.1004-7859.2012.03.004
    [29]
    唐波. 宽带认知雷达低峰均比波形快速设计算法[J]. 航空学报, 2016, 37(2): 688–694. doi: 10.7527/S1000-6893.2015.0125

    TANG Bo. Efficient design algorithm of low PAR waveform for wideband cognitive radar[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 688–694. doi: 10.7527/S1000-6893.2015.0125
    [30]
    TANG Bo and TANG Jun. Robust waveform design of wideband cognitive radar for extended target detection[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016: 3096–3100. doi: 10.1109/ICASSP.2016.7472247.
    [31]
    付月. 稳健的恒模序列设计与处理方法[D]. [硕士论文], 电子科技大学, 2018.

    FU Yue. Robust design and processing method for constant modulus sequences[D]. [Master dissertation], University of Electronic Science and Technology of China, 2018.
    [32]
    LI Jian, XU Luzhou, STOICA P, et al. Range compression and waveform optimization for MIMO radar: A CramÉr-Rao bound based study[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 218–232. doi: 10.1109/TSP.2007.901653
    [33]
    HULEIHEL W, TABRIKIAN J, and SHAVIT R. Optimal adaptive waveform design for cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2013, 61(20): 5075–5089. doi: 10.1109/TSP.2013.2269045
    [34]
    DE MAIO A and LOPS M. Design principles of MIMO radar detectors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 886–898. doi: 10.1109/TAES.2007.4383581
    [35]
    AUBRY A, LOPS M, TULINO A M, et al. On MIMO detection under non-gaussian target scattering[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5822–5838. doi: 10.1109/TIT.2010.2068930
    [36]
    GROSSI E and LOPS M. Space-time code design for MIMO detection based on kullback-leibler divergence[J]. IEEE Transactions on Information Theory, 2012, 58(6): 3989–4004. doi: 10.1109/TIT.2012.2189754
    [37]
    WANG Li, ZHU Wei, ZHANG Yunlei, et al. Multi-target detection and adaptive waveform design for cognitive MIMO radar[J]. IEEE Sensors Journal, 2018, 18(24): 9962–9970. doi: 10.1109/JSEN.2018.2873103
    [38]
    YANG Yang and BLUM R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 330–343. doi: 10.1109/TAES.2007.357137
    [39]
    YANG Yang and BLUM R S. Minimax robust MIMO radar waveform design[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 147–155. doi: 10.1109/JSTSP.2007.897056
    [40]
    TANG Bo, TANG Jun, and PENG Yingning. MIMO radar waveform design in colored noise based on information theory[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4684–4697. doi: 10.1109/TSP.2010.2050885
    [41]
    ZHANG Wenshu and YANG Liuqing. Communications-inspired sensing: A case study on waveform design[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 792–803. doi: 10.1109/TSP.2009.2028941
    [42]
    TANG Bo, TANG Jun, and PENG Yingning. Waveform optimization for MIMO radar in colored noise: Further results for estimation-oriented criteria[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1517–1522. doi: 10.1109/TSP.2011.2177262
    [43]
    王鹏, 崔琛, 张鑫. 色噪声下认知雷达自适应检测波形设计[J]. 电子信息对抗技术, 2013, 28(5): 39–43, 58. doi: 10.3969/j.issn.1674-2230.2013.05.009

    WANG Peng, CUI Chen, and ZHANG Xin. Adaptive waveform design for cognitive radar detection in colored noise[J]. Electronic Information Warfare Technology, 2013, 28(5): 39–43, 58. doi: 10.3969/j.issn.1674-2230.2013.05.009
    [44]
    KAY S. Optimal signal design for detection of Gaussian point targets in stationary Gaussian clutter/reverberation[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 31–41. doi: 10.1109/JSTSP.2007.897046
    [45]
    SIRA S P, COCHRAN D, PAPANDREOU-SUPPAPPOLA A, et al. Adaptive waveform design for improved detection of low-RCS targets in heavy sea clutter[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 56–66. doi: 10.1109/JSTSP.2007.897048
    [46]
    SOLTANALIAN M, TANG Bo, LI Jian, et al. Joint design of the receive filter and transmit sequence for active sensing[J]. IEEE Signal Processing Letters, 2013, 20(5): 423–426. doi: 10.1109/LSP.2013.2250279
    [47]
    AUBRY A, DE MAIO A, PIEZZO M, et al. Cognitive radar waveform design for spectral coexistence in signal-dependent interference[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 474–478. doi: 10.1109/RADAR.2014.6875638.
    [48]
    CHENG Xu, AUBRY A, CIUONZO D, et al. Robust waveform and filter bank design of polarimetric radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 370–384. doi: 10.1109/TAES.2017.2650619
    [49]
    AUBRY A, DE MAIO A, JIANG Bo, et al. Ambiguity function shaping for cognitive radar via complex quartic optimization[J]. IEEE Transactions on Signal Processing, 2013, 61(22): 5603–5619. doi: 10.1109/TSP.2013.2273885
    [50]
    NAGHSH M M, SOLTANALIAN M, STOICA P, et al. A Doppler robust design of transmit sequence and receive filter in the presence of signal-dependent interference[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 772–785. doi: 10.1109/TSP.2013.2288082
    [51]
    AUBRY A, DE MAIO A, and NAGHSH M M. Optimizing radar waveform and Doppler filter bank via generalized fractional programming[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1387–1399. doi: 10.1109/JSTSP.2015.2469259
    [52]
    CUI Guolong, FU Yue, YU Xianxiang, et al. Robust transmitter-receiver design in the presence of signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1871–1882. doi: 10.1109/TAES.2018.2805147
    [53]
    PILLAI S U, OH H S, YOULA D C, et al. Optimal transmit-receiver design in the presence of signal-dependent interference and channel noise[J]. IEEE Transactions on Information Theory, 2000, 46(2): 577–584. doi: 10.1109/18.825822
    [54]
    ROMERO R A, BAE J, and GOODMAN N A. Theory and application of SNR and mutual information matched illumination waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 912–927. doi: 10.1109/TAES.2011.5751234
    [55]
    纠博, 刘宏伟, 李丽亚, 等. 雷达波形优化的特征互信息方法[J]. 西安电子科技大学学报: 自然科学版, 2009, 36(1): 139–144. doi: 10.3969/j.issn.1001-2400.2009.01.026

    JIU Bo, LIU Hongwei, LI Liya, et al. Feature mutual information method for radar waveform optimization[J]. Journal of Xidian University, 2009, 36(1): 139–144. doi: 10.3969/j.issn.1001-2400.2009.01.026
    [56]
    郝天铎, 崔琛, 龚阳, 等. 基于凸优化方法的认知雷达低峰均比波形设计[J]. 雷达学报, 2018, 7(4): 498–506. doi: 10.12000/JR18002

    HAO Tianduo, CUI Chen, GONG Yang, et al. Waveform design for cognitive radar under low PAR constraints by convex optimization[J]. Journal of Radars, 2018, 7(4): 498–506. doi: 10.12000/JR18002
    [57]
    CUI Guolong, FU Yue, YU Xianxiang, et al. Robust transmitter-receiver design for extended target in signal-dependent interference[J]. Signal Processing, 2018, 147: 60–67. doi: 10.1016/j.sigpro.2018.01.007
    [58]
    FRIEDLANDER B. Waveform design for MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1227–1238. doi: 10.1109/TAES.2007.4383615
    [59]
    DULY A J, LOVE D J, and KROGMEIER J V. Time-division beamforming for MIMO radar waveform design[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1210–1223. doi: 10.1109/TAES.2013.6494408
    [60]
    CUI Guolong, LI Hongbin, and RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 343–353. doi: 10.1109/TSP.2013.2288086
    [61]
    CHENG Ziyang, HE Zishu, LIAO Bin, et al. MIMO radar waveform design with PAPR and similarity constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 968–981. doi: 10.1109/TSP.2017.2780052
    [62]
    IMANI S and ALI GHORASHI S. Sequential quasi-convex-based algorithm for waveform design in colocated multiple-input multiple-output radars[J]. IET Signal Processing, 2016, 10(3): 309–317. doi: 10.1049/iet-spr.2015.0181
    [63]
    JIU Bo, LIU Hongwei, WANG Xu, et al. Knowledge-based spatial-temporal hierarchical MIMO radar waveform design method for target detection in heterogeneous clutter zone[J]. IEEE Transactions on Signal Processing, 2015, 63(3): 543–554. doi: 10.1109/TSP.2014.2366714
    [64]
    NAGHSH M M, MODARRES-HASHEMI M, KERAHROODI M A, et al. An information theoretic approach to robust constrained code design for MIMO radars[J]. IEEE Transactions on Signal Processing, 2017, 65(14): 3647–3661. doi: 10.1109/TSP.2017.2692747
    [65]
    WANG Yuxi, LI Wei, SUN Qilu, et al. A robust joint design of transmit waveform and receive filter for MIMO radar space-time adaptive processing with signal-dependent interferences[J]. IET Radar, Sonar & Navigation, 2017, 11(8): 1321–1332. doi: 10.1049/iet-rsn.2016.0514
    [66]
    TANG Bo and TANG Jun. Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707–4722. doi: 10.1109/TSP.2016.2569431
    [67]
    LIU Yuchun, WANG Hongyan, and WANG Jun. Robust multiple-input multiple-output radar waveform design in the presence of clutter[J]. IET Radar, Sonar & Navigation, 2016, 10(7): 1249–1259. doi: 10.1049/iet-rsn.2015.0497
    [68]
    ZHU Wei and TANG Jun. Robust design of transmit waveform and receive filter for colocated MIMO radar[J]. IEEE Signal Processing Letters, 2015, 22(11): 2112–2116. doi: 10.1109/LSP.2015.2461460
    [69]
    YU Xianxiang, CUI Guolong, KONG Lingjiang, et al. Constrained waveform design for colocated MIMO radar with uncertain steering matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 356–370. doi: 10.1109/TAES.2018.2852200
    [70]
    YU Xianxiang, CUI Guolong, PIEZZO M, et al. Robust constrained waveform design for MIMO radar with uncertain steering vectors[J]. EURASIP Journal on Advances in Signal Processing, 2017, 2017(1): 2. doi: 10.1186/s13634-016-0437-9
    [71]
    KARBASI S M, AUBRY A, CAROTENUTO V, et al. Knowledge-based design of space-time transmit code and receive filter for a multiple-input-multiple-output radar in signal-dependent interference[J]. IET Radar, Sonar & Navigation, 2015, 9(8): 1124–1135. doi: 10.1049/iet-rsn.2014.0527
    [72]
    CUI Guolong, YU Xianxiang, CAROTENUTO V, et al. Space-time transmit code and receive filter design for colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2017, 65(5): 1116–1129. doi: 10.1109/TSP.2016.2633242
    [73]
    CHEN Chunyang and VAIDYANATHAN P P. MIMO radar waveform optimization with prior information of the extended target and clutter[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3533–3544. doi: 10.1109/TSP.2009.2021632
    [74]
    KARBASI S M, RADMARD M, NAYEBI M M, et al. Design of multiple-input multiple-output transmit waveform and receive filter for extended target detection[J]. IET Radar, Sonar & Navigation, 2015, 9(9): 1345–1353. doi: 10.1049/iet-rsn.2015.0063
    [75]
    NAGHIBI T and BEHNIA F. MIMO radar waveform design in the presence of clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 770–781. doi: 10.1109/TAES.2011.5751224
    [76]
    TANG Bo and LI Jian. Spectrally constrained MIMO radar waveform design based on mutual information[J]. IEEE Transactions on Signal Processing, 2019, 67(3): 821–834. doi: 10.1109/TSP.2018.2887186
    [77]
    CUI Guolong, YU Xianxiang, YANG Ya, et al. Cognitive phase-only sequence design with desired correlation and stopband properties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2924–2935. doi: 10.1109/TAES.2017.2721238
    [78]
    ZHAO Licheng, SONG Junxiao, BABU P, et al. A unified framework for low autocorrelation sequence design via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2017, 65(2): 438–453. doi: 10.1109/TSP.2016.2620113
    [79]
    HE Hao, STOICA P, and LI Jian. On synthesizing cross ambiguity functions[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, 2011: 3536–3539. doi: 10.1109/ICASSP.2011.5946241.
    [80]
    ZHANG Jindong, SHI Changli, QIU Xiaoyan, et al. Shaping radar ambiguity function by L-phase unimodular sequence[J]. IEEE Sensors Journal, 2016, 16(14): 5648–5659. doi: 10.1109/JSEN.2016.2567643
    [81]
    ALAEE-KERAHROODI M, SEDIGHI S, SHANKAR M R B, et al. Designing (in)finite-alphabet sequences via shaping the radar ambiguity function[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, United Kingdom, 2019: 4295–4299. doi: 10.1109/ICASSP.2019.8682216.
    [82]
    FENG Xiang, ZHAO Yinan, ZHOU Zhiquan, et al. Waveform design with low range sidelobe and high Doppler tolerance for cognitive radar[J]. Signal Processing, 2017, 139: 143–155. doi: 10.1016/j.sigpro.2017.04.014
    [83]
    ARLERY F, KASSAB R, TAN U, et al. Efficient gradient method for locally optimizing the periodic/aperiodic ambiguity function[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485309.
    [84]
    CUI Guolong, FU Yue, YU Xianxiang, et al. Local ambiguity function shaping via unimodular sequence design[J]. IEEE Signal Processing Letters, 2017, 24(7): 977–981. doi: 10.1109/LSP.2017.2700396
    [85]
    JING Yang, LIANG Junli, TANG Bo, et al. Designing unimodular sequence with low peak of sidelobe level of local ambiguity function[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1393–1406. doi: 10.1109/TAES.2018.2870459
    [86]
    YANG Jing, CUI Guolong, YU Xianxiang, et al. Cognitive local ambiguity function shaping with spectral coexistence[J]. IEEE Access, 2018, 6: 50077–50086. doi: 10.1109/ACCESS.2018.2868884
    [87]
    CUI Guolong, YU Xianxiang, PIEZZO M, et al. Constant modulus sequence set design with good correlation properties[J]. Signal Processing, 2017, 139: 75–85. doi: 10.1016/j.sigpro.2017.04.009
    [88]
    LI Yongzhe and VOROBYOV S A. Fast algorithms for designing unimodular waveform(s) with good correlation properties[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1197–1212. doi: 10.1109/TSP.2017.2787104
    [89]
    YU Guoyang, LIANG Junli, LI Jian, et al. Sequence set design with accurately controlled correlation properties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 3032–3046. doi: 10.1109/TAES.2018.2836778
    [90]
    GERLACH K. Thinned spectrum ultrawideband waveforms using stepped-frequency polyphase codes[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1356–1361. doi: 10.1109/7.722721
    [91]
    FAUST H H, CONNOLLY B, FIRESTONE T M, et al. A spectrally clean transmitting system for solid-state phased-array radars[C]. 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 140–144. doi: 10.1109/NRC.2004.1316410.
    [92]
    DE GRAAF J, FAUST H, ALATISHE J, et al. Generation of spectrally confined transmitted radar waveforms: Experimental results[C]. 2006 IEEE Radar Conference, Verona, USA, 2006: 76–83. doi: 10.1109/RADAR.2006.1631779.
    [93]
    SELESNICK I W, PILLAI S U, and ZHENG Richeng. An iterative algorithm for the construction of notched chirp signals[C]. Proceedings of 2010 IEEE Radar Conference, Washington, USA, 2010: 200–203. doi: 10.1109/RADAR.2010.5494625.
    [94]
    LINDENFELD M J. Sparse frequency transmit-and-receive waveform design[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 851–861. doi: 10.1109/TAES.2004.1337459
    [95]
    LIU W X, LU Y L, and LESTURGIE M. Optimal sparse waveform design for HFSWR system[C]. 2007 International Waveform Diversity and Design Conference, Pisa, Italy, 2007: 127–130. doi: 10.1109/WDDC.2007.4339394.
    [96]
    WANG Guohua, MAI Chaoyun, SUN Jinping, et al. Sparse frequency waveform analysis and design based on ambiguity function theory[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 707–717. doi: 10.1049/iet-rsn.2015.0270
    [97]
    ROWE W, STOICA P, and LI Jian. Spectrally constrained waveform design[J]. IEEE Signal Processing Magazine, 2014, 31(3): 157–162. doi: 10.1109/MSP.2014.2301792
    [98]
    LIANG Junli, SO H C, LEUNG CS, et al. Waveform design with unit modulus and spectral shape constraints via lagrange programming neural network[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1377–1386. doi: 10.1109/JSTSP.2015.2464178
    [99]
    TANG Bo and LIANG Junli. Efficient algorithms for synthesizing probing waveforms with desired spectral shapes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1174–1189. doi: 10.1109/TAES.2018.2876585
    [100]
    GE Peng, CUI Guolong, KARBASI S M, et al. A template fitting approach for cognitive unimodular sequence design[J]. Signal Processing, 2016, 128: 360–368. doi: 10.1016/j.sigpro.2016.05.008
    [101]
    YANG Jing, CUI Guolong, YU Xianxiang, et al. Waveform design with spectral coexistence[C]. 2019 IEEE Radar Conference, Boston, USA, 2019. doi: 10.1109/RADAR.2019.8835848.
    [102]
    FUHRMANN D R and SAN ANTONIO G. Transmit beamforming for MIMO radar systems using partial signal correlation[C]. 2004 Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2004. doi: 10.1109/ACSSC.2004.1399140.
    [103]
    STOICA P, LI Jian, and XIE Yao. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151–4161. doi: 10.1109/TSP.2007.894398
    [104]
    AHMED S, THOMPSON J S, PETILLOT Y R, et al. Unconstrained synthesis of covariance matrix for MIMO radar transmit beampattern[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3837–3849. doi: 10.1109/TSP.2011.2153200
    [105]
    HUA Guang and ABEYSEKERA S S. MIMO radar transmit beampattern design with ripple and transition band control[J]. IEEE Transactions on Signal Processing, 2013, 61(11): 2963–2974. doi: 10.1109/TSP.2013.2252173
    [106]
    LIPOR J, AHMED S, and ALOUINI M S. Fourier-based transmit beampattern design using MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2226–2235. doi: 10.1109/TSP.2014.2307838
    [107]
    GONG Pengcheng, SHAO Zhenhai, TU Guangpeng, et al. Transmit beampattern design based on convex optimization for MIMO radar systems[J]. Signal Processing, 2014, 94: 195–201. doi: 10.1016/j.sigpro.2013.06.021
    [108]
    YU Xianxiang, CUI Guolong, ZHANG Tianxian, et al. Constrained transmit beampattern design for colocated MIMO radar[J]. Signal Processing, 2018, 144: 145–154. doi: 10.1016/j.sigpro.2017.10.010
    [109]
    STOICA P, LI Jian, and ZHU Xumin. Waveform synthesis for diversity-based transmit beampattern design[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2593–2598. doi: 10.1109/TSP.2007.916139
    [110]
    WANG Yongchao, WANG Xu, LIU Hongwei, et al. On the design of constant modulus probing signals for MIMO radar[J]. IEEE Transactions on Signal Processing, 2012, 60(8): 4432–4438. doi: 10.1109/TSP.2012.2197615
    [111]
    AHMED S and ALOUINI M S. MIMO radar transmit beampattern design without synthesising the covariance matrix[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2278–2289. doi: 10.1109/TSP.2014.2310435
    [112]
    SOLTANALIAN M, HU Heng, and STOICA P. Single-stage transmit beamforming design for MIMO radar[J]. Signal Processing, 2014, 102: 132–138. doi: 10.1016/j.sigpro.2014.03.013
    [113]
    ZHANG Xiaojun, HE Zishu, RAYMAN-BACCHUS L, et al. MIMO radar transmit beampattern matching design[J]. IEEE Transactions on Signal Processing, 2015, 63(8): 2049–2056. doi: 10.1109/TSP.2015.2398841
    [114]
    CHENG Ziyang, HAN Chunlin, LIAO Bin, et al. Communication-aware waveform design for MIMO radar with good transmit beampattern[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5549–5562. doi: 10.1109/TSP.2018.2868042
    [115]
    FAN Wen, LIANG Junli, and LI Jian. Constant modulus MIMO radar waveform design with minimum peak sidelobe transmit beampattern[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4207–4222. doi: 10.1109/TSP.2018.2847636
    [116]
    HE Hao, STOICA P, and LI Jian. Wideband MIMO systems: Signal design for transmit beampattern synthesis[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 618–628. doi: 10.1109/TSP.2010.2091410
    [117]
    ALDAYEL O, MONGA V, and RANGASWAMY M. Tractable transmit MIMO beampattern design under a constant modulus constraint[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2588–2599. doi: 10.1109/TSP.2017.2664040
    [118]
    MCCORMICK P M, BLUNT S D, and METCALF J G. Wideband MIMO frequency-modulated emission design with space-frequency nulling[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 363–378. doi: 10.1109/JSTSP.2016.2627180
    [119]
    YU Xianxiang, CUI Guolong, YANG Jing, et al. Wideband MIMO radar waveform design[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3487–3501. doi: 10.1109/TSP.2019.2916732
    [120]
    CUI Guolong, YANG Jing, LU Shuping, et al. Dual-use unimodular sequence design via frequency nulling modulation[J]. IEEE Access, 2018, 6: 62470–62481. doi: 10.1109/ACCESS.2018.2876644
    [121]
    LIU Yongjun, LIAO Guisheng, XU Jingwei, et al. Adaptive OFDM integrated radar and communications waveform design based on information theory[J]. IEEE Communications Letters, 2017, 21(10): 2174–2177. doi: 10.1109/LCOMM.2017.2723890
    [122]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(8118) PDF downloads(1104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint