Zhou Yu, Wang Hai-peng, Chen Si-zhe. SAR Automatic Target Recognition Based on Numerical Scattering Simulation and Model-based Matching[J]. Journal of Radars, 2015, 4(6): 666-673. doi: 10.12000/JR15080
Citation: Kuang Hui, Yang Wei, Wang Pengbo, Chen Jie. Three-dimensional Imaging Algorithm for Multi-azimuth-angle Multi-baseline Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2018, 7(6): 685-695. doi: 10.12000/JR18073

Three-dimensional Imaging Algorithm for Multi-azimuth-angle Multi-baseline Spaceborne Synthetic Aperture Radar

DOI: 10.12000/JR18073
Funds:  The International S&T Cooperation Program of China (2015DFA10270)
  • Received Date: 2018-09-04
  • Rev Recd Date: 2018-12-15
  • Publish Date: 2018-12-28
  • Traditional spaceborne Synthetic Aperture Radar (SAR) can acquire three-dimensional (3D) images by using multi-baseline SAR data, which solves the problem of layover in two-dimensional (2D) SAR image, however, there is still a problem of insufficient information acquisition caused by occlusion. Considering this, a 3D imaging algorithm for multi-azimuth-angle multi-baseline spaceborne SAR is proposed in this paper; this algorithm not only solves the problem of layover, but also reduces the occlusion area by fusing the 3D point clouds obtained under different azimuth angles and improves the information acquisition ability of spaceborne SAR. First, the observation model of multi-azimuth-angle multi-baseline spaceborne SAR is established, and it shows that the mathematical signal models of the multi-baseline SAR in the squint mode and broadside mode are the same, which provides theoretical support for the direct application of broadside 3D imaging algorithm to the 3D processing of squint mode. On this basis, the 3D imaging algorithm and processing flow of multi-azimuth-angle multi-baseline spaceborne SAR are presented. Finally, the effectivenesses of the squint 3D imaging method and 3D point clouds fusion method are verified by point targets simulation experiment with 45° azimuth angle and helicopter simulation experiments with 45° and –45° azimuth angles, respectively.

     

  • [1]
    李春升, 王伟杰, 王鹏波, 等. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229–240. DOI: 10.11999/JEIT151116

    Li Chun-sheng, Wang Wei-jie, Wang Peng-bo, et al. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronics&Information Technology, 2016, 38(1): 229–240. DOI: 10.11999/JEIT151116
    [2]
    Jung H S, Lu Z, Shepherd A, et al. Simulation of the SuperSAR multi-azimuth synthetic aperture radar imaging system for precise measurement of three-dimensional earth surface displacement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11): 6196–6206. DOI: 10.1109/TGRS.2015.2435776
    [3]
    Zhu X X and Bamler R. Very high resolution spaceborne SAR tomography in urban environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4296–4308. DOI: 10.1109/TGRS.2010.2050487
    [4]
    Zhu X X, Shahzad M, and Bamler R. From TomoSAR point clouds to objects: Façade reconstruction[C]. Proceedings of 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing, Naples, Italy, 2012: 106–113.
    [5]
    Shahzad M, Zhu X X, and Bamler R. Façade structure reconstruction using spaceborne TomoSAR point clouds[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 467–470. DOI: 10.1109/IGARRSS.2012.6351385.
    [6]
    Wang Y Y and Zhu X X. Feature-based fusion of tomosar point clouds from multiview TerraSAR-X data stacks[C]. Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 85–88. DOI: 10.1109/IGARSS.2013.6721098.
    [7]
    Zhu X X and Shahzad M. Facade reconstruction using multiview spaceborne TomoSAR point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3541–3552. DOI: 10.1109/TGRS.2013.2273619
    [8]
    Fornaro G, Serafino F, and Soldovieri F. Three-dimensional focusing with multipass SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3): 507–517. DOI: 10.1109/TGRS.2003.809934
    [9]
    孙希龙. SAR层析与差分层析成像技术研究[D]. [博士论文], 国防科学技术大学, 2012.

    Sun Xi-long. Research on SAR tomography and differential SAR tomography imaging technology[D]. [Ph.D. dissertation], National University of Defense Technology, 2012.
    [10]
    Curlander J C and McDonough R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York: John Wiley & Sons, 1991.
    [11]
    Bara M, Scheiber R, Broquetas A, et al. Interferometric SAR signal analysis in the presence of squint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2164–2178. DOI: 10.1109/36.868875
    [12]
    Schmitt M. Reconstruction of urban surface models from multi-aspect and multi-baseline interferometric SAR[D]. [Ph.D. dissertation], Technische Universität München, 2014.
    [13]
    周月琴, 郑肇葆, 李德仁, 等. SAR图像立体定位原理与精度分析[J]. 遥感学报, 1998, 2(4): 245–250. DOI: 10.11834/jrs.19980402

    Zhou Yue-qin, Zheng Zhao-bao, Li De-ren, et al. Stereopair positioning algorithm for SAR images and its accuracy analysis model[J]. Journal of Remote Sensing, 1998, 2(4): 245–250. DOI: 10.11834/jrs.19980402
    [14]
    王青松, 黄海风, 董臻. 星载干涉合成孔径雷达[M]. 北京: 科学出版社, 2012.

    Wang Qing-song, Huang Hai-feng, and Dong Zhen. Spaceborne Interferometric SAR[M]. Beijing: Science Press, 2012.
    [15]
    王金峰. SAR层析三维成像技术研究[D]. [博士论文], 电子科技大学, 2010.

    Wang Jin-feng. Study of three-dimentional synthetic aperture radar tomography imaging technology[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2010.
    [16]
    Moreira A and Scheiber R. A new method for accurate co-registration of interferometric SAR images[C]. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings, Seattle, USA, 1998, 2: 1091–1093. DOI: 10.1109/IGARSS.1998.699682.
    [17]
    Yee K. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302–307. DOI: 10.1109/TAP.1966.1138693
  • Relative Articles

    [1]LI Miaoge, CHEN Bo, WANG Dongsheng, LIU Hongwei. CNN Model Visualization Method for SAR Image Target Classification[J]. Journal of Radars, 2024, 13(2): 359-373. doi: 10.12000/JR23107
    [2]CHEN Xiaolong, HE Xiaoyang, DENG Zhenhua, GUAN Jian, DU Xiaolin, XUE Wei, SU Ningyuan, WANG Jinhao. Radar Intelligent Processing Technology and Application for Weak Target[J]. Journal of Radars, 2024, 13(3): 501-524. doi: 10.12000/JR23160
    [3]WANG Canyu, JIANG Libing, REN Xiaoyuan, WANG Zhuang. Primitive-based 3D Abstraction Method for Spacecraft ISAR Images[J]. Journal of Radars, 2024, 13(3): 682-695. doi: 10.12000/JR23241
    [4]LIU Qi, YU Weidong, HONG Wen. Vehicle Detection in Multi-aspect SAR Images Based on Improved GOFRO[J]. Journal of Radars, 2023, 12(5): 1081-1096. doi: 10.12000/JR23042
    [5]ZHANG Fan, LU Shengtao, XIANG Deliang, YUAN Xinzhe. An Improved Superpixel-based CFAR Method for High-resolution SAR Image Ship Target Detection[J]. Journal of Radars, 2023, 12(1): 120-139. doi: 10.12000/JR22067
    [6]LI Yi, DU Lan, DU Yuang. Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images[J]. Journal of Radars, 2023, 12(5): 1069-1080. doi: 10.12000/JR23004
    [7]YAN Linjie, HAO Chengpeng, YIN Chaoran, SUN Weixuan, HOU Chaohuan. Modified Generalized Likelihood Ratio Test Detection Based on a Symmetrically Spaced Linear Array in Partially Homogeneous Environments[J]. Journal of Radars, 2021, 10(3): 443-452. doi: 10.12000/JR20140
    [8]GUO Weiwei, ZHANG Zenghui, YU Wenxian, SUN Xiaohua. Perspective on Explainable SAR Target Recognition[J]. Journal of Radars, 2020, 9(3): 462-476. doi: 10.12000/JR20059
    [9]GUO Qian, WANG Haipeng, XU Feng. Research Progress on Aircraft Detection and Recognition in SAR Imagery[J]. Journal of Radars, 2020, 9(3): 497-513. doi: 10.12000/JR20020
    [10]DAI Muchen, LENG Xiangguang, XIONG Boli, JI Kefeng. Sea-land Segmentation Method for SAR Images Based on Improved BiSeNet[J]. Journal of Radars, 2020, 9(5): 886-897. doi: 10.12000/JR20089
    [11]ZUO Lei, CHAN Xiuxiu, LU Xiaofei, LI Ming. A Weak Target Detection Method in Sea Clutter Based on Joint Space-time-frequency Decomposition[J]. Journal of Radars, 2019, 8(3): 335-343. doi: 10.12000/JR19035
    [12]Yu Lingjuan, Wang Yadong, Xie Xiaochun, Lin Yun, Hong Wen. SAR ATR Based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622-631. doi: 10.12000/JR18066
    [13]Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025
    [14]Liu Zeyu, Liu Bin, Guo Weiwei, Zhang Zenghui, Zhang Bo, Zhou Yueheng, Ma Gao, Yu Wenxian. Ship Detection in GF-3 NSC Mode SAR Images[J]. Journal of Radars, 2017, 6(5): 473-482. doi: 10.12000/JR17059
    [15]Wu Yiquan, Wang Zhilai. SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation[J]. Journal of Radars, 2017, 6(4): 349-358. doi: 10.12000/JR17019
    [16]Kang Miao, Ji Kefeng, Leng Xiangguang, Xing Xiangwei, Zou Huanxin. SAR Target Recognition with Feature Fusion Based on Stacked Autoencoder[J]. Journal of Radars, 2017, 6(2): 167-176. doi: 10.12000/JR16112
    [17]Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078
    [18]Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037
    [19]Lin Chunfeng, Huang Chunlin, Su Yi. Target Integration and Detection with the Radon-Fourier Transform for Bistatic Radar[J]. Journal of Radars, 2016, 5(5): 526-530. doi: 10.12000/JR16049
    [20]Ding Hao, Xue Yong-hua, Huang Yong, Guan Jian. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter[J]. Journal of Radars, 2015, 4(4): 418-430. doi: 10.12000/JR14133
  • Cited by

    Periodical cited type(7)

    1. 赵梓桐,谢军,陈丽. 基于改进PSO的分布式信号合成功率分配方法. 计算机测量与控制. 2025(01): 121-130 .
    2. 张世超,朱玉权,刘志永. 基于时延差和相位差结合的分布式相参参数在线精确估计方法. 舰船电子对抗. 2025(01): 82-88+92 .
    3. 贲德. 机载有源相控阵火控雷达技术发展. 现代雷达. 2024(02): 1-15 .
    4. 欧阳晓凤,芮梓轩,曾芳玲,唐希雯. 稀疏节点直接序列扩频信号空间能量合成研究. 信息对抗技术. 2024(05): 62-73 .
    5. 蔡兴雨,王亚军,王旭,臧会凯,怀园园,朱思桥. 一种基于云边端架构的雷达组网协同系统设计方案. 现代雷达. 2024(09): 37-48 .
    6. 王元昊,王宏强,杨琪. 动平台分布孔径雷达相参合成探测方法与试验验证. 雷达学报. 2024(06): 1279-1297 . 本站查看
    7. 赵开发,宋虎,刘溶,王鑫海. 一种基于阵列构型与阵元数量联合优化的分布式雷达主瓣干扰抑制方法. 雷达学报. 2024(06): 1355-1369 . 本站查看

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.2 %FULLTEXT: 32.2 %META: 56.2 %META: 56.2 %PDF: 11.6 %PDF: 11.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.6 %其他: 7.6 %其他: 2.0 %其他: 2.0 %Parkville: 0.1 %Parkville: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.4 %[]: 0.4 %上海: 1.9 %上海: 1.9 %东京: 0.3 %东京: 0.3 %东京都: 0.1 %东京都: 0.1 %东莞: 0.2 %东莞: 0.2 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.2 %临沂: 0.2 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %九江: 0.2 %九江: 0.2 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.1 %内江: 0.1 %凉山: 0.1 %凉山: 0.1 %北京: 13.5 %北京: 13.5 %十堰: 0.1 %十堰: 0.1 %南京: 2.3 %南京: 2.3 %南充: 0.2 %南充: 0.2 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %卡拉奇: 0.1 %卡拉奇: 0.1 %印多尔: 0.2 %印多尔: 0.2 %厦门: 0.5 %厦门: 0.5 %台北: 0.1 %台北: 0.1 %合肥: 1.1 %合肥: 1.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.1 %唐山: 0.1 %喀什: 0.1 %喀什: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.3 %大连: 0.3 %天津: 0.4 %天津: 0.4 %天门: 0.1 %天门: 0.1 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.2 %安康: 0.2 %宜春: 0.1 %宜春: 0.1 %宣城: 0.1 %宣城: 0.1 %常州: 0.3 %常州: 0.3 %常德: 0.2 %常德: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.1 %广州: 1.1 %庆阳: 0.1 %庆阳: 0.1 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.2 %延安: 0.2 %开封: 0.1 %开封: 0.1 %张家口: 1.3 %张家口: 1.3 %徐州: 0.4 %徐州: 0.4 %德黑兰: 0.4 %德黑兰: 0.4 %忻州: 1.2 %忻州: 1.2 %怀化: 0.1 %怀化: 0.1 %悉尼: 0.2 %悉尼: 0.2 %成都: 1.9 %成都: 1.9 %扬州: 0.5 %扬州: 0.5 %斯德哥尔摩: 0.1 %斯德哥尔摩: 0.1 %新乡: 0.1 %新乡: 0.1 %新德里: 0.1 %新德里: 0.1 %新泽西州: 0.1 %新泽西州: 0.1 %新竹: 0.2 %新竹: 0.2 %无锡: 0.3 %无锡: 0.3 %昆明: 0.9 %昆明: 0.9 %昌吉: 0.1 %昌吉: 0.1 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.2 %杭州: 1.2 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %泉州: 0.1 %泉州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %济宁: 0.1 %济宁: 0.1 %淮北: 0.1 %淮北: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 1.1 %深圳: 1.1 %渥太华: 0.2 %渥太华: 0.2 %温州: 0.3 %温州: 0.3 %渭南: 0.1 %渭南: 0.1 %湖州: 0.2 %湖州: 0.2 %湛江: 0.1 %湛江: 0.1 %漯河: 1.1 %漯河: 1.1 %烟台: 0.1 %烟台: 0.1 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 25.3 %芒廷维尤: 25.3 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.6 %衡水: 0.6 %衡阳: 0.5 %衡阳: 0.5 %衢州: 0.1 %衢州: 0.1 %西宁: 14.3 %西宁: 14.3 %西安: 2.6 %西安: 2.6 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %运城: 0.5 %运城: 0.5 %连云港: 0.1 %连云港: 0.1 %遂宁: 0.4 %遂宁: 0.4 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.4 %郑州: 0.4 %重庆: 0.6 %重庆: 0.6 %长沙: 1.4 %长沙: 1.4 %长治: 0.2 %长治: 0.2 %青岛: 0.4 %青岛: 0.4 %首尔: 0.3 %首尔: 0.3 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ParkvilleUnited States[]上海东京东京都东莞中卫临汾临沂丹东乌鲁木齐九江保定兰州兰辛内江凉山北京十堰南京南充南宁南昌南通卡拉奇印多尔厦门台北合肥呼和浩特咸阳哈尔滨唐山喀什嘉兴大连天津天门太原威海娄底宁波安康宜春宣城常州常德平顶山广州庆阳库比蒂诺延安开封张家口徐州德黑兰忻州怀化悉尼成都扬州斯德哥尔摩新乡新德里新泽西州新竹无锡昆明昌吉晋中晋城朝阳杭州格兰特县桂林武威武汉沈阳沧州泉州洛阳济南济宁淮北淮南深圳渥太华温州渭南湖州湛江漯河烟台珠海石家庄福州秦皇岛纽约绵阳芒廷维尤芜湖芝加哥苏州莫斯科葫芦岛衡水衡阳衢州西宁西安诺沃克贵阳赣州运城连云港遂宁邯郸郑州重庆长沙长治青岛首尔黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2892) PDF downloads(361) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint