Citation: | ZHANG Fan, LU Shengtao, XIANG Deliang, et al. An improved superpixel-based CFAR method for high-resolution SAR image ship target detection[J]. Journal of Radars, 2023, 12(1): 120–139. doi: 10.12000/JR22067 |
[1] |
杜兰, 王兆成, 王燕, 等. 复杂场景下单通道SAR目标检测及鉴别研究进展综述[J]. 雷达学报, 2020, 9(1): 34–54. doi: 10.12000/JR19104
DU Lan, WANG Zhaocheng, WANG Yan, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes[J]. Journal of Radars, 2020, 9(1): 34–54. doi: 10.12000/JR19104
|
[2] |
马俊虎, 刘长远, 甘露. 基于压缩感知的CFAR目标检测算法[J]. 电子与信息学报, 2017, 39(12): 2899–2904. doi: 10.11999/JEIT170382
MA Junhu, LIU Changyuan, and GAN Lu. CFAR target detection algorithm based on compressive sensing[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2899–2904. doi: 10.11999/JEIT170382
|
[3] |
许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684–714. doi: 10.12000/JR20084
XU Shuwen, BAI Xiaohui, GUO Zixun, et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9(4): 684–714. doi: 10.12000/JR20084
|
[4] |
李春升, 于泽, 陈杰. 高分辨率星载SAR成像与图像质量提升方法综述[J]. 雷达学报, 2019, 8(6): 717–731. doi: 10.12000/JR19085
LI Chunsheng, YU Ze, and CHEN Jie. Overview of techniques for improving high-resolution spaceborne SAR imaging and image quality[J]. Journal of Radars, 2019, 8(6): 717–731. doi: 10.12000/JR19085
|
[5] |
房明星, 毕大平, 沈爱国, 等. 对SAR图像恒虚警检测的多假目标干扰研究[J]. 电子与信息学报, 2017, 39(4): 973–980. doi: 10.11999/JEIT160633
FANG Mingxing, BI Daping, SHEN Aiguo, et al. Jamming technique of multiple false targets against CFAR detection in SAR images[J]. Journal of Electronics &Information Technology, 2017, 39(4): 973–980. doi: 10.11999/JEIT160633
|
[6] |
黄寅礼, 孙路, 郭亮, 等. 基于空间变迹滤波旁瓣抑制与有序统计恒虚警率的舰船检测算法[J]. 雷达学报, 2020, 9(2): 335–342. doi: 10.12000/JR19082
HUANG Yinli, SUN Lu, GUO Liang, et al. Ship detection algorithm based on spatially variant apodization sidelobe suppression and order statistic-constant false alarm rate[J]. Journal of Radars, 2020, 9(2): 335–342. doi: 10.12000/JR19082
|
[7] |
SCHWEGMANN C P, KLEYNHANS W, and SALMON B P. Manifold adaptation for constant false alarm rate ship detection in south african oceans[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3329–3337. doi: 10.1109/JSTARS.2015.2417756
|
[8] |
QIN Xianxiang, ZHOU Shilin, ZOU Huanxin, et al. A CFAR detection algorithm for generalized Gamma distributed background in high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 806–810. doi: 10.1109/LGRS.2012.2224317
|
[9] |
朱洁丽, 汤俊. 基于改进的ZMNL和SIRP的K分布杂波模拟方法[J]. 雷达学报, 2014, 3(5): 533–540. doi: 10.3724/SP.J.1300.2014.13124
ZHU Jieli and TANG Jun. K-distribution clutter simulation methods based on improved ZMNL and SIRP[J]. Journal of Radars, 2014, 3(5): 533–540. doi: 10.3724/SP.J.1300.2014.13124
|
[10] |
SHAN Zili, WANG Chao, ZHANG Hong, et al. Change detection in urban areas with high resolution SAR images using second kind statistics based G0 distribution[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 4600–4603.
|
[11] |
孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097
SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097
|
[12] |
LI Dong, LIANG Quanhuan, LIU Hongqing, et al. A novel multidimensional domain deep learning network for SAR ship detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5203213. doi: 10.1109/TGRS.2021.3062038
|
[13] |
张晓玲, 张天文, 师君, 等. 基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 雷达学报, 2019, 8(6): 841–851. doi: 10.12000/JR19111
ZHANG Xiaoling, ZHANG Tianwen, SHI Jun, et al. High-speed and high-accurate SAR ship detection based on a depthwise separable convolution neural network[J]. Journal of Radars, 2019, 8(6): 841–851. doi: 10.12000/JR19111
|
[14] |
WU Zitong, HOU Biao, REN Bo, et al. A deep detection network based on interaction of instance segmentation and object detection for SAR images[J]. Remote Sensing, 2021, 13(13): 2582. doi: 10.3390/rs13132582
|
[15] |
SUN Yuanrui, SUN Xian, WANG Zhirui, et al. Oriented ship detection based on strong scattering points network in large-scale SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5218018. doi: 10.1109/TGRS.2021.3130117
|
[16] |
CUI Yi, ZHOU Guangyi, YANG Jian, et al. On the iterative censoring for target detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 641–645. doi: 10.1109/LGRS.2010.2098434
|
[17] |
AN Wentao, XIE Chunhua, and YUAN Xinzhe. An improved iterative censoring scheme for CFAR ship detection with SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4585–4595. doi: 10.1109/TGRS.2013.2282820
|
[18] |
GAO Gui, LIU Li, ZHAO Lingjun, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1685–1697. doi: 10.1109/TGRS.2008.2006504
|
[19] |
HOU Biao, CHEN Xingzhong, and JIAO Licheng. Multilayer CFAR detection of ship targets in very high resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 811–815. doi: 10.1109/LGRS.2014.2362955
|
[20] |
LENG Xiangguang, JI Kefeng, YANG Kai, et al. A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1536–1540. doi: 10.1109/LGRS.2015.2412174
|
[21] |
艾加秋, 曹振翔, 毛宇翔, 等. 一种复杂环境下改进的SAR图像双边CFAR舰船检测算法[J]. 雷达学报, 2021, 10(4): 499–515. doi: 10.12000/JR20127
AI Jiaqiu, CAO Zhenxiang, MAO Yuxiang, et al. An improved bilateral CFAR ship detection algorithm for SAR image in complex environment[J]. Journal of Radars, 2021, 10(4): 499–515. doi: 10.12000/JR20127
|
[22] |
WANG Zhaocheng, DU Lan, and SU Hongtao. Target detection via Bayesian-morphological saliency in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5455–5466. doi: 10.1109/TGRS.2017.2707672
|
[23] |
JIA Sen, DENG Xianglong, XU Meng, et al. Superpixel-level weighted label propagation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 5077–5091. doi: 10.1109/TGRS.2020.2972294
|
[24] |
HE Jinglu, WANG Yinghua, LIU Hongwei, et al. A novel automatic PolSAR ship detection method based on superpixel-level local information measurement[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 384–388. doi: 10.1109/LGRS.2017.2789204
|
[25] |
崔兴超, 粟毅, 陈思伟. 融合极化旋转域特征和超像素技术的极化SAR舰船检测[J]. 雷达学报, 2021, 10(1): 35–48. doi: 10.12000/JR20147
CUI Xingchao, SU Yi, and CHEN Siwei. Polarimetric SAR ship detection based on polarimetric rotation domain features and superpixel technique[J]. Journal of Radars, 2021, 10(1): 35–48. doi: 10.12000/JR20147
|
[26] |
聂茜茜, 肖斌, 毕秀丽, 等. 基于超像素级卷积神经网络的多聚焦图像融合算法[J]. 电子与信息学报, 2021, 43(4): 965–973. doi: 10.11999/JEIT191053
NIE Xixi, XIAO Bin, BI Xiuli, et al. Multi-focus image fusion algorithm based on super pixel level convolutional neural network[J]. Journal of Electronics &Information Technology, 2021, 43(4): 965–973. doi: 10.11999/JEIT191053
|
[27] |
ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274–2282. doi: 10.1109/TPAMI.2012.120
|
[28] |
XIANG Deliang, TANG Tao, ZHAO Lingjun, et al. Superpixel generating algorithm based on pixel intensity and location similarity for SAR image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1414–1418. doi: 10.1109/LGRS.2013.2259214
|
[29] |
JING Wenbo, JIN Tian, and XIANG Deliang. Content-sensitive superpixel generation for SAR images with edge penalty and contraction-expansion search strategy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210715. doi: 10.1109/TGRS.2021.3077407
|
[30] |
JING Wenbo, JIN Tian, and XIANG Deliang. Edge-aware superpixel generation for SAR imagery with one iteration merging[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(9): 1600–1604. doi: 10.1109/LGRS.2020.3005973
|
[31] |
XIANG Deliang, TANG Tao, QUAN Sinong, et al. Adaptive superpixel generation for SAR images with linear feature clustering and edge constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3873–3889. doi: 10.1109/TGRS.2018.2888891
|
[32] |
CUI Zongyong, HOU Zesheng, YANG Hongzhi, et al. A CFAR target-detection method based on superpixel statistical modeling[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(9): 1605–1609. doi: 10.1109/LGRS.2020.3006033
|
[33] |
YU Wenyi, WANG Yinghua, LIU Hongwei, et al. Superpixel-based CFAR target detection for high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 730–734. doi: 10.1109/LGRS.2016.2540809
|
[34] |
PAPPAS O, ACHIM A, and BULL D. Superpixel-level CFAR detectors for ship detection in SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9): 1397–1401. doi: 10.1109/LGRS.2018.2838263
|
[35] |
LI Tao, LIU Zheng, XIE Rong, et al. An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 184–194. doi: 10.1109/JSTARS.2017.2764506
|
[36] |
LIU Ming, CHEN Shichao, LU Fugang, et al. Realizing target detection in SAR images based on multiscale superpixel fusion[J]. Sensors, 2021, 21(5): 1643. doi: 10.3390/s21051643
|
[37] |
LI Mingdian, CUI Xingchao, and CHEN Siwei. Adaptive superpixel-level CFAR detector for SAR inshore dense ship detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010405. doi: 10.1109/LGRS.2021.3059253
|
[38] |
LI Tao, PENG Dongliang, CHEN Zhikun, et al. Superpixel-level CFAR detector based on truncated gamma distribution for SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(8): 1421–1425. doi: 10.1109/LGRS.2020.3003659
|
[39] |
ZHANG Liang, LU Shengtao, HU Canbin, et al. Superpixel generation for SAR imagery based on fast DBSCAN clustering with edge penalty[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 804–819. doi: 10.1109/JSTARS.2021.3131187
|
[40] |
KURUOGLU E E and ZERUBIA J. Modelling SAR images with a generalisation of the Rayleigh distribution[C]. Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2000: 224–228.
|
[41] |
LI Hengchao, KRYLOV V A, FAN Pingzhi, et al. Unsupervised learning of generalized gamma mixture model with application in statistical modeling of high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2153–2170. doi: 10.1109/TGRS.2015.2496348
|
[42] |
NAR F, OKMAN O E, ÖZGÜR A, et al. Fast target detection in radar images using Rayleigh mixtures and summed area tables[J]. Digital Signal Processing, 2018, 77: 86–101. doi: 10.1016/j.dsp.2017.09.015
|