Wang Xuesong. Status and Prospects of Radar Polarimetry Techniques[J]. Journal of Radars, 2016, 5(2): 119-131. doi: 10.12000/JR16039
Citation: LI Yi, DU Lan, and DU Yuang. Convolutional neural network based on feature decomposition for target detection in SAR images[J]. Journal of Radars, 2023, 12(5): 1069–1080. doi: 10.12000/JR23004

Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images

DOI: 10.12000/JR23004
Funds:  The National Natural Science Foundation of China (U21B2039)
More Information
  • Corresponding author: DU Lan, dulan@mail.xidian.edu.cn
  • Received Date: 2023-01-06
  • Rev Recd Date: 2023-03-25
  • Available Online: 2023-03-30
  • Publish Date: 2023-04-18
  • Most high-resolution Synthetic Aperture Radar (SAR) images of real-life scenes are complex due to clutter, such as grass, trees, roads, and buildings, in the background. Traditional target detection algorithms for SAR images contain numerous false and missed alarms due to such clutter, adversely affecting the performance of SAR images target detection. Herein we propose a feature decomposition-based Convolutional Neural Network (CNN) for target detection in SAR images. The feature extraction module first extracts features from the input images, and these features are then decomposed into discriminative and interfering features using the feature decomposition module. Furthermore, only the discriminative features are input into the multiscale detection module for target detection. The interfering features that are removed after feature decomposition are the parts that are unfavorable to target detection, such as complex background clutter, whereas the discriminative features that are retained are the parts that are favorable to target detection, such as the targets of interest. Hence, an effective reduction in the number of false and missed alarms, as well as an improvement in the performance of SAR target detection, is achieved. The F1-score values of the proposed method are 0.9357 and 0.9211 for the MiniSAR dataset and SAR Aircraft Detection Dataset (SADD), respectively. Compared to the single shot multibox detector without the feature extraction module, the F1-score values of the proposed method for the MiniSAR and SADD datasets show an improvement of 0.0613 and 0.0639, respectively. Therefore, the effectiveness of the proposed method for target detection in SAR images of complex scenes was demonstrated through experimental results based on the measured datasets.

     

  • [1]
    NOVAK L M, BURL M C, and IRVING W W. Optimal polarimetric processing for enhanced target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 234–244. doi: 10.1109/7.249129
    [2]
    XING Xiangwei, CHEN Zhenlin, ZOU Huanxin, et al. A fast algorithm based on two-stage CFAR for detecting ships in SAR images[C]. The 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 2009: 506–509.
    [3]
    LENG Xiangguang, JI Kefeng, YANG Kai, et al. A bilateral CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1536–1540. doi: 10.1109/LGRS.2015.2412174
    [4]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [5]
    HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. doi: 10.1126/science.1127647
    [6]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    [7]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [8]
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    [9]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [10]
    GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    [11]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems, Montréal, Canada, 2015: 91–99.
    [12]
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    [13]
    NEUBECK A and VAN GOOL L. Efficient non-maximum suppression[C]. The 18th International Conference on Pattern Recognition, Hong Kong, China, 2006: 850–855.
    [14]
    王思雨, 高鑫, 孙皓, 等. 基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J]. 雷达学报, 2017, 6(2): 195–203. doi: 10.12000/JR17009

    WANG Siyu, GAO Xin, SUN Hao, et al. An aircraft detection method based on convolutional neural networks in high-resolution SAR images[J]. Journal of Radars, 2017, 6(2): 195–203. doi: 10.12000/JR17009
    [15]
    WANG Zhaocheng, DU Lan, MAO Jiashun, et al. SAR target detection based on SSD with data augmentation and transfer learning[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 150–154. doi: 10.1109/LGRS.2018.2867242
    [16]
    李健伟, 曲长文, 彭书娟, 等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40(9): 1953–1959. doi: 10.3969/j.issn.1001-506X.2018.09.09

    LI Jianwei, QU Changwen, PENG Shujuan, et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40(9): 1953–1959. doi: 10.3969/j.issn.1001-506X.2018.09.09
    [17]
    ZHANG Shaoming, WU Ruize, XU Kunyuan, et al. R-CNN-based ship detection from high resolution remote sensing imagery[J]. Remote Sensing, 2019, 11(6): 631. doi: 10.3390/rs11060631
    [18]
    陈慧元, 刘泽宇, 郭炜炜, 等. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J]. 雷达学报, 2019, 8(3): 413–424. doi: 10.12000/JR19041

    CHEN Huiyuan, LIU Zeyu, GUO Weiwei, et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network[J]. Journal of Radars, 2019, 8(3): 413–424. doi: 10.12000/JR19041
    [19]
    WEI Di, DU Yuang, DU Lan, et al. Target detection network for SAR images based on semi-supervised learning and attention mechanism[J]. Remote Sensing, 2021, 13(14): 2686. doi: 10.3390/RS13142686
    [20]
    GLOROT X, BORDES A, and BENGIO Y. Deep sparse rectifier neural networks[C]. The 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2011: 315–323.
    [21]
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440.
    [22]
    GUTIERREZ D. MiniSAR: A review of 4-inch and 1-foot resolution Ku-band imagery[EB/OL]. https://www.sandia.gov/radar/Web/images/SAND2005-3706P-miniSAR-flight-SAR-images.pdf, 2005.
    [23]
    ZHANG Peng, XU Hao, TIAN Tian, et al. SEFEPNet: Scale expansion and feature enhancement pyramid network for SAR aircraft detection with small sample dataset[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3365–3375. doi: 10.1109/JSTARS.2022.3169339
    [24]
    LIN Tsungyi, DOLLÁR Piotr, GIRSHICK Ross, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
    [25]
    LI Lu, DU Yuang, and DU Lan. Vehicle target detection network in SAR images based on rectangle-invariant rotatable convolution[J]. Remote Sensing, 2022, 14(13): 3086. doi: 10.3390/rs14133086
    [26]
    杜兰, 王梓霖, 郭昱辰, 等. 结合强化学习自适应候选框挑选的SAR目标检测方法[J]. 雷达学报, 2022, 11(5): 884–896. doi: 10.12000/JR22121

    DU Lan, WANG Zilin, GUO Yuchen, et al. Adaptive region proposal selection for SAR target detection using reinforcement learning[J]. Journal of Radars, 2022, 11(5): 884–896. doi: 10.12000/JR22121
  • Relative Articles

    [1]WAN Hao, LIANG Jing. HRRP Unsupervised Target Feature Extraction Method Based on Multiple Contrastive Loss in Radar Sensor Networks[J]. Journal of Radars. doi: 10.12000/JR24200
    [2]WANG Binglu, JIN Yang, ZHANG Lei, ZHENG Le, ZHOU Tianfei. Collaborative Perception Method Based on Multisensor Fusion[J]. Journal of Radars, 2024, 13(1): 87-96. doi: 10.12000/JR23184
    [3]ZHANG Xuqi, ZHOU Bin, LIU Haiqi, LIAO Ji, LIU Yongxu, YANG Guang. A Scalable Method for Group Target Tracking Using Multisensor with Limited Field of Views[J]. Journal of Radars, 2024, 13(6): 1220-1238. doi: 10.12000/JR24054
    [4]WANG Zengfu, SHAO Yi, QI Dengliang, JIN Shuling. Consistency-based Air Target Height Estimation and Location in Distributed Space-based Radar Network[J]. Journal of Radars, 2023, 12(6): 1249-1262. doi: 10.12000/JR23157
    [5]ZHU Peikun, LIANG Jing, LUO Zihan, SHEN Xiaofeng. Waveform Selection Method of Cognitive Radar Target Tracking Based on Reinforcement Learning[J]. Journal of Radars, 2023, 12(2): 412-424. doi: 10.12000/JR22239
    [6]DA Kai, YANG Ye, ZHU Yongfeng, FU Qiang. Multitarget Tracking Using Distributed Radar with Partially Overlapping Fields of Views[J]. Journal of Radars, 2022, 11(3): 459-468. doi: 10.12000/JR21183
    [7]SHI Chenguang, WANG Yijie, DAI Xiangrong, ZHOU Jianjiang. Joint Transmit Resources and Trajectory Planning for Target Tracking in Airborne Radar Networks[J]. Journal of Radars, 2022, 11(5): 778-793. doi: 10.12000/JR22005
    [8]XUE Cewen, FENG Xuan, LI Xiaotian, LIANG Wenjing, ZHOU Haoqiu, WANG Ying. Multi-polarization Data Fusion Analysis of Full-Polarimetric Ground Penetrating Radar[J]. Journal of Radars, 2021, 10(1): 74-85. doi: 10.12000/JR20104
    [9]JIN Biao, LI Cong, ZHANG Zhenkai. Group Target Track Initiation Method Aided by Echo Amplitude Information[J]. Journal of Radars, 2020, 9(4): 723-729. doi: 10.12000/JR19088
    [10]FANG Linlin, ZHOU Chao, WANG Rui, HU Cheng. RCS Feature-aided Insect Target Tracking Algorithm[J]. Journal of Radars, 2019, 8(5): 598-605. doi: 10.12000/JR19067
    [11]Hui Ye, Bai Xueru. RID Image Series-based High-resolution Three-dimensional Imaging of Micromotion Targets[J]. Journal of Radars, 2018, 7(5): 548-556. doi: 10.12000/JR18056
    [12]Ge Jianjun, Li Chunxia. A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy[J]. Journal of Radars, 2017, 6(6): 587-593. doi: 10.12000/JR17081
    [13]Lu Yanxi, He Zishu, Cheng Ziyang, Liu Shuangli. Joint Selection of Transmitters and Receivers in Distributed Multi-input Multi-output Radar Network for Multiple Targets Tracking[J]. Journal of Radars, 2017, 6(1): 73-80. doi: 10.12000/JR16106
    [14]Yang Wei, Chen Jie, Li Chun-sheng. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction[J]. Journal of Radars, 2015, 4(1): 29-37. doi: 10.12000/JR15017
    [15]Yang Jin-long, Liu Feng-mei, Wang Dong, Ge Hong-wei. Affinity Propagation Based Measurement Partition Algorithm for Multiple Extended Target Tracking[J]. Journal of Radars, 2015, 4(4): 452-459. doi: 10.12000/JR15003
    [16]Qi Lin, Wang Hai-peng, Liu Yu. Track segment association algorithm based on statistical binary thresholds[J]. Journal of Radars, 2015, 4(3): 301-308. doi: 10.12000/JR14077
    [17]Zhu Hong-wei, Tang Xiao-ming, He You. Observability Analysis of Sensor Bias Based on the Track-independent Model[J]. Journal of Radars, 2013, 2(4): 454-460. doi: 10.3724/SP.J.1300.2013.13068
    [18]Li Wei, Wang Xing-liang, Zou Kun, Xu Yi-meng, Zhang Qun. Anti Deceptive Jamming for MIMO Radar Based on Data Fusion and Notch Filtering (in English)[J]. Journal of Radars, 2012, 1(3): 246-252. doi: 10.3724/SP.J.1300.2012.20060
    [19]Yuan Ding-bo, Meng Cang-zhen, Xu Jia, Peng Ying-ning. Target Association of Heterogeneous Sensors Based on Nearest-neighbor and Topology[J]. Journal of Radars, 2012, 1(4): 393-398. doi: 10.3724/SP.J.1300.2012.20083
    [20]Meng Cang-zhen, Yuan Ding-bo, Xu Jia, Peng Shi-bao, Wang Xiao-jun. A New Target-correlation Algorithm for Heterogeneous Sensors Based on Neural Network Classification[J]. Journal of Radars, 2012, 1(4): 399-405. doi: 10.3724/SP.J.1300.2012.20087
  • Cited by

    Periodical cited type(4)

    1. 王进,冷祥光,孙忠镇,马晓杰,杨阳,计科峰. 复杂运动舰船目标SAR成像空/时变散焦特性研究. 系统工程与电子技术. 2024(07): 2237-2255 .
    2. 曹晔,闫海鹏,张剑琦,师亚辉,张振华. 高动态条件下舰船目标SAR成像算法研究. 遥测遥控. 2019(04): 40-48 .
    3. 魏翔飞,王小青,种劲松. 一种基于局域中心频率的SAR图像舰船方位向速度估计方法. 电子与信息学报. 2018(09): 2242-2249 .
    4. 杨传安,齐向阳,李宁. 一种基于参数估计的运动舰船SAR成像方法. 国外电子测量技术. 2017(05): 30-36 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.2 %FULLTEXT: 11.2 %META: 76.3 %META: 76.3 %PDF: 12.5 %PDF: 12.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.8 %其他: 17.8 %其他: 0.4 %其他: 0.4 %Absecon: 0.1 %Absecon: 0.1 %Central District: 0.0 %Central District: 0.0 %China: 0.7 %China: 0.7 %Herndon: 0.5 %Herndon: 0.5 %India: 0.1 %India: 0.1 %[]: 0.4 %[]: 0.4 %上海: 1.0 %上海: 1.0 %东京: 0.0 %东京: 0.0 %东莞: 0.3 %东莞: 0.3 %九江: 0.1 %九江: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %佛山: 0.0 %佛山: 0.0 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.0 %兰辛: 0.0 %包头: 0.1 %包头: 0.1 %北京: 16.3 %北京: 16.3 %北京市: 0.0 %北京市: 0.0 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.7 %南京: 0.7 %南昌: 0.8 %南昌: 0.8 %南昌市: 0.1 %南昌市: 0.1 %台北: 0.0 %台北: 0.0 %台州: 0.0 %台州: 0.0 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %夏尔迦: 0.1 %夏尔迦: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.5 %大连: 0.5 %天津: 0.3 %天津: 0.3 %太原: 0.3 %太原: 0.3 %宣城: 0.2 %宣城: 0.2 %巴中: 0.0 %巴中: 0.0 %布里斯班: 0.1 %布里斯班: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.0 %常德: 0.0 %广州: 0.3 %广州: 0.3 %广州市天河区: 0.1 %广州市天河区: 0.1 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %张家口: 1.2 %张家口: 1.2 %德阳: 0.1 %德阳: 0.1 %成都: 1.2 %成都: 1.2 %新乡: 0.1 %新乡: 0.1 %无锡: 0.0 %无锡: 0.0 %昆明: 0.0 %昆明: 0.0 %杭州: 1.4 %杭州: 1.4 %桂林: 0.3 %桂林: 0.3 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.0 %沈阳: 0.0 %泰安: 0.1 %泰安: 0.1 %泰州: 0.1 %泰州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.0 %济南: 0.0 %深圳: 0.6 %深圳: 0.6 %温州: 0.1 %温州: 0.1 %渭南: 0.3 %渭南: 0.3 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.0 %漳州: 0.0 %烟台: 0.1 %烟台: 0.1 %珠海: 0.0 %珠海: 0.0 %石家庄: 0.7 %石家庄: 0.7 %石家庄市: 0.0 %石家庄市: 0.0 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.3 %绵阳: 0.3 %聊城: 0.1 %聊城: 0.1 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 10.8 %芒廷维尤: 10.8 %芝加哥: 0.9 %芝加哥: 0.9 %莫斯科: 0.0 %莫斯科: 0.0 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.0 %衡水: 0.0 %衢州: 0.0 %衢州: 0.0 %西宁: 32.2 %西宁: 32.2 %西安: 2.0 %西安: 2.0 %运城: 0.1 %运城: 0.1 %郑州: 0.3 %郑州: 0.3 %鄂州: 0.2 %鄂州: 0.2 %重庆: 0.5 %重庆: 0.5 %金华: 0.0 %金华: 0.0 %长沙: 0.6 %长沙: 0.6 %青岛: 0.6 %青岛: 0.6 %香港: 0.0 %香港: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %其他其他AbseconCentral DistrictChinaHerndonIndia[]上海东京东莞九江伊利诺伊州佛山兰州兰辛包头北京北京市华盛顿州南京南昌南昌市台北台州合肥哈尔滨嘉兴夏尔迦大庆大连天津太原宣城巴中布里斯班常州常德广州广州市天河区库比蒂诺张家口德阳成都新乡无锡昆明杭州桂林武汉沈阳泰安泰州洛阳济南深圳温州渭南湖州湘潭漯河漳州烟台珠海石家庄石家庄市纽约绍兴绵阳聊城舟山芒廷维尤芝加哥莫斯科蚌埠衡水衢州西宁西安运城郑州鄂州重庆金华长沙青岛香港齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2054) PDF downloads(513) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint