Volume 4 Issue 4
Oct.  2015
Turn off MathJax
Article Contents
Yang Jin-long, Liu Feng-mei, Wang Dong, Ge Hong-wei. Affinity Propagation Based Measurement Partition Algorithm for Multiple Extended Target Tracking[J]. Journal of Radars, 2015, 4(4): 452-459. doi: 10.12000/JR15003
Citation: Yang Jin-long, Liu Feng-mei, Wang Dong, Ge Hong-wei. Affinity Propagation Based Measurement Partition Algorithm for Multiple Extended Target Tracking[J]. Journal of Radars, 2015, 4(4): 452-459. doi: 10.12000/JR15003

Affinity Propagation Based Measurement Partition Algorithm for Multiple Extended Target Tracking

DOI: 10.12000/JR15003
  • Received Date: 2015-01-16
  • Rev Recd Date: 2015-01-20
  • Publish Date: 2015-08-28
  • It is difficult to accurately and rapidly partition measurement sets of multiple extended targets in cluttered environment. Hence the affinity propagation method is introduced and a novel measurement partition algorithm is proposed. First, the measurement set is preprocessed by using density analysis to remove clutters from the measurements. Second, the number and location of the extended targets is determined via competition among the measurements. Finally, state estimates are obtained by using the probability hypothesis density filter. Simulations show that the proposed algorithm offers good performance in measurement partitioning of extended target tracking with clutter disturbance. Compared with the distance partition and K-means++ methods, the proposed method effectively minimizes the computation time and retrieves the number of targets iteratively.

     

  • loading
  • [1]
    Mahler R. PHD filters for nonstandard targets, I: Extended targets[C]. Proceedings of the 12th International Conference on Information Fusion, Seattle, USA, 2009: 915-921.
    [2]
    Gilholm K, Godsill S, Maskell S, et al.. Poisson models for extended target and group tracking[C]. Proceedings of Signal and Data Processing of Small Targets, California, USA: SPIE, 2005: 230-241.
    [3]
    Salmond D J and Parr M C. Track maintenance using measurements of target extent[J]. IEEE Proceedings-Radar, Sonar and Navigation, 2003, 150(6): 389-395.
    [4]
    Koch J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042-1059.
    [5]
    Swain A and Clark D. The PHD filter for extended target tracking with estimable extent shape parameters of varying size[C]. Proceedings of the 15th International Conference on Information Fusion, Singapore, 2012: 1111-1118.
    [6]
    Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
    [7]
    Vo B N and Ma W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal
    [8]
    Processing, 2006, 54(11): 4091-4104. Granstrom K, Lundquist C, and Orguner O. Extended target tracking using a Gaussian-mixture PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286.
    [9]
    Orguner U, Lundquist C, and Granstrom K. Extended target tracking with a cardinalized probability hypothesis density filter[C]. Proceedings of the 14th International Conference on Information Fusion, Chicago, USA, 2011: 1-8.
    [10]
    Granstrom K, Lundquist C, and Orguner O. A Guassisan mixture PHD filter for Extended target tracking[C]. Proceedings of the 13th International Conference on Information Fusion, Edinburgh, UK, 2010: 1-8.
    [11]
    Granstrom K and Orguner U. A PHD filter for tracking multiple extended targets using random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5657-5671.
    [12]
    Yang Jin-long, Liu Feng-mei, Ge Hong-wei, et al.. Multiple extended target tracking algorithm based on GM-PHD filter and spectral clustering [J]. EURASIP Journal on Advances in Signal Processing, 2014, 117: 1-8.
    [13]
    Botev Z I, Grotowski J F, and Kroese D P. Kernel density estimation via diffusion[J]. The Annals of Statistics, 2010, 38(5): 2916-2957.
    [14]
    Hall P and Wand M. On the accuracy of binned kernel density estimators[J]. Journal of Multivariate Analysis, 1994, 56(2): 165-184.
    [15]
    Frey B J and Dueck D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976.
    [16]
    Schuhmacher D, Vo B T, and Vo B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457.
    [17]
    李鹏, 杨金龙, 葛洪伟. 基于高斯曲面特征矩阵的扩展目标形 状估计[J]. 光电子激光, 2014, 25(9): 1803-1811. Li Peng, Yang Jin-long, and Ge Hong-wei. Shape estimation of extended targets based on Gaussian surface feature matrix[J]. Journal of Optoelectronics Laser, 2014, 25(9): 1803-1811.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2591) PDF downloads(1437) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint