Processing math: 100%
WAN Hao and LIANG Jing. HRRP unsupervised target feature extraction method based on multiple contrastive loss in radar sensor networks[J]. Journal of Radars, in press. doi: 10.12000/JR24200
Citation: WAN Hao and LIANG Jing. HRRP unsupervised target feature extraction method based on multiple contrastive loss in radar sensor networks[J]. Journal of Radars, in press. doi: 10.12000/JR24200

HRRP Unsupervised Target Feature Extraction Method Based on Multiple Contrastive Loss in Radar Sensor Networks

DOI: 10.12000/JR24200
Funds:  The National Natural Science Foundation of China (62471118), and the 111 Project (B17008)
More Information
  • Corresponding author: LIANG Jing, liangjing@uestc.edu.cn
  • Received Date: 2024-10-14
  • Rev Recd Date: 2024-11-08
  • Available Online: 2024-11-11
  • In recent years, target recognition systems based on radar sensor networks have been widely studied in the field of automatic target recognition. These systems observe the target from multiple angles to achieve robust recognition, which also brings the problem of using the correlation and difference information of multiradar sensor echo data. Furthermore, most existing studies used large-scale labeled data to obtain prior knowledge of the target. Considering that a large amount of unlabeled data is not effectively used in target recognition tasks, this paper proposes an HRRP unsupervised target feature extraction method based on Multiple Contrastive Loss (MCL) in radar sensor networks. The proposed method combines instance level loss, Fisher loss, and semantic consistency loss constraints to identify consistent and discriminative feature vectors among the echoes of multiple radar sensors and then use them in subsequent target recognition tasks. Specifically, the original echo data are mapped to the contrast loss space and the semantic label space. In the contrast loss space, the contrastive loss is used to constrain the similarity and aggregation of samples so that the relative and absolute distances between different echoes of the same target obtained by different sensors are reduced while the relative and absolute distances between different target echoes are increased. In the semantic loss space, the extracted discriminant features are used to constrain the semantic labels so that the semantic information and discriminant features are consistent. Experiments on an actual civil aircraft dataset revealed that the target recognition accuracy of the MCL-based method is improved by 0.4% and 1.4%, respectively, compared with the most advanced unsupervised algorithm CC and supervised target recognition algorithm PNN. Further, MCL can effectively improve the target recognition performance of radar sensors when applied in conjunction with the sensors.

     

  • [1]
    陈健, 杜兰, 廖磊瑶. 基于参数化统计模型的雷达HRRP目标识别方法综述[J]. 雷达学报, 2022, 11(6): 1020–1047. doi: 10.12000/JR22127.

    CHEN Jian, DU Lan, and LIAO Leiyao. Survey of radar HRRP target recognition based on parametric statistical model[J]. Journal of Radars, 2022, 11(6): 1020–1047. doi: 10.12000/JR22127.
    [2]
    DONG Ganggang and LIU Hongwei. A hierarchical receptive network oriented to target recognition in SAR images[J]. Pattern Recognition, 2022, 126: 108558. doi: 10.1016/j.patcog.2022.108558.
    [3]
    ZHANG Yukun, GUO Xiansheng, LEUNG H, et al. Cross-task and cross-domain SAR target recognition: A meta-transfer learning approach[J]. Pattern Recognition, 2023, 138: 109402. doi: 10.1016/j.patcog.2023.109402.
    [4]
    CHEN Bo, LIU Hongwei, CHAI Jing, et al. Large margin feature weighting method via linear programming[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10): 1475–1488. doi: 10.1109/TKDE.2008.238.
    [5]
    MOLCHANOV P, EGIAZARIAN K, ASTOLA J, et al. Classification of aircraft using micro-Doppler bicoherence-based features[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1455–1467. doi: 10.1109/TAES.2014.120266.
    [6]
    LI Xiaoxiong, ZHANG Shuning, ZHU Yuying, et al. Supervised contrastive learning for vehicle classification based on the IR-UWB radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5117312. doi: 10.1109/TGRS.2022.3203468.
    [7]
    CHEN Jian, DU Lan, HE Hua, et al. Convolutional factor analysis model with application to radar automatic target recognition[J]. Pattern Recognition, 2019, 87: 140–156. doi: 10.1016/j.patcog.2018.10.014.
    [8]
    FENG Bo, CHEN Bo, and LIU Hongwei. Radar HRRP target recognition with deep networks[J]. Pattern Recognition, 2017, 61: 379–393. doi: 10.1016/j.patcog.2016.08.012.
    [9]
    DU Lan, LIU Hongwei, WANG Penghui, et al. Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3546–3559. doi: 10.1109/TSP.2012.2191965.
    [10]
    XU Bin, CHEN Bo, WAN Jinwei, et al. Target-aware recurrent attentional network for radar HRRP target recognition[J]. Signal Processing, 2019, 155: 268–280. doi: 10.1016/j.sigpro.2018.09.041.
    [11]
    SHI Lei, WANG Penghui, LIU Hongwei, et al. Radar HRRP statistical recognition with local factor analysis by automatic Bayesian Ying-Yang harmony learning[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 610–617. doi: 10.1109/TSP.2010.2088391.
    [12]
    LIAO Leiyao, DU Lan, and CHEN Jian. Class factorized complex variational auto-encoder for HRR radar target recognition[J]. Signal Processing, 2021, 182: 107932. doi: 10.1016/j.sigpro.2020.107932.
    [13]
    MAO Chengchen and LIANG Jing. HRRP recognition in radar sensor network[J]. Ad Hoc Networks, 2017, 58: 171–178. doi: 10.1016/j.adhoc.2016.09.001.
    [14]
    LUNDÉN J and KOIVUNEN V. Deep learning for HRRP-based target recognition in multistatic radar systems[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485271.
    [15]
    章鹏飞, 李刚, 霍超颖, 等. 基于双雷达微动特征融合的无人机分类识别[J]. 雷达学报, 2018, 7(5): 557–564. doi: 10.12000/JR18061.

    ZHANG Pengfei, LI Gang, HUO Chaoying, et al. Classification of drones based on micro-Doppler radar signatures using dual radar sensors[J]. Journal of Radars, 2018, 7(5): 557–564. doi: 10.12000/JR18061.
    [16]
    郭帅, 陈婷, 王鹏辉, 等. 基于角度引导Transformer融合网络的多站协同目标识别方法[J]. 雷达学报, 2023, 12(3): 516–528. doi: 10.12000/JR23014.

    GUO Shuai, CHEN Ting, WANG Penghui, et al. Multistation cooperative radar target recognition based on an angle-guided transformer fusion network[J]. Journal of Radars, 2023, 12(3): 516–528. doi: 10.12000/JR23014.
    [17]
    吕小玲, 仇晓兰, 俞文明, 等. 基于无监督域适应的仿真辅助SAR目标分类方法及模型可解释性分析[J]. 雷达学报, 2022, 11(1): 168–182. doi: 10.12000/JR21179.

    LYU Xiaoling, QIU Xiaolan, YU Wenming, et al. Simulation-assisted SAR target classification based on unsupervised domain adaptation and model interpretability analysis[J]. Journal of Radars, 2022, 11(1): 168–182. doi: 10.12000/JR21179.
    [18]
    WU Zhirong, XIONG Yuanjun, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3733–3742. doi: 10.1109/CVPR.2018.00393.
    [19]
    ÖZDEMIR C. Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms[M]. 2nd ed. Hoboken: John Wiley & Sons, 2021: 167–170.
    [20]
    DU Lan, WANG Penghui, LIU Hongwei, et al. Bayesian spatiotemporal multitask learning for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3182–3196. doi: 10.1109/TSP.2011.2141664.
    [21]
    LIAO Kuo, SI Jinxiu, ZHU Fangqi, et al. Radar HRRP target recognition based on concatenated deep neural networks[J]. IEEE Access, 2018, 6: 29211–29218. doi: 10.1109/ACCESS.2018.2842687.
    [22]
    CHEN Ting, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]. The 37th International Conference on Machine Learning, Virtual Event, 2020: 149.
    [23]
    WANG Feng and LIU Huaping. Understanding the behaviour of contrastive loss[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2495–2504. doi: 10.1109/CVPR46437.2021.00252.
    [24]
    HE Kaiming, FAN Haoqi, WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9729–9738. doi: 10.1109/CVPR42600.2020.00975.
    [25]
    CARON M, MISRA I, MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 831.
    [26]
    LI Yunfan, HU Peng, LIU Zitao, et al. Contrastive clustering[C]. The 35th AAAI Conference on Artificial Intelligence, Virtual Event, 2021: 8547–8555. doi: 10.1609/aaai.v35i10.17037.
    [27]
    PAN Mian, LIU Ailin, YU Yanzhen, et al. Radar HRRP target recognition model based on a stacked CNN–Bi-RNN with attention mechanism[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5100814. doi: 10.1109/TGRS.2021.3055061.
    [28]
    CHEN Jian, DU Lan, GUO Guanbo, et al. Target-attentional CNN for radar automatic target recognition with HRRP[J]. Signal Processing, 2022, 196: 108497. doi: 10.1016/j.sigpro.2022.108497.
    [29]
    WU Lingang, HU Shengliang, XU Jianghu, et al. Ship HRRP target recognition against decoy jamming based on CNN-BiLSTM-SE model[J]. IET Radar, Sonar & Navigation, 2024, 18(2): 361–378. doi: 10.1049/rsn2.12507.
  • Relative Articles

    [1]CAO Jingyi, ZHANG Yang, YOU Ya’nan, WANG Yamin, YANG Feng, REN Weijia, LIU Jun. Target Recognition Method Based on Graph Structure Perception of Invariant Features for SAR Images[J]. Journal of Radars, 2025, 14(2): 366-388. doi: 10.12000/JR24125
    [2]LI Yi, DU Lan, ZHOU Ke’er, DU Yuang. Deep Network for SAR Target Recognition Based on Attribute Scattering Center Convolutional Kernel Modulation[J]. Journal of Radars, 2024, 13(2): 443-456. doi: 10.12000/JR24001
    [3]WAQI Riti, LI Gang, ZHAO Zhichun, ZE Zhenghua. Feature Selection Method of Radar-based Road Target Recognition via Histogram Analysis and Adaptive Genetics[J]. Journal of Radars, 2023, 12(5): 1014-1030. doi: 10.12000/JR22245
    [4]XING Mengdao, XIE Yiyuan, GAO Yuexin, ZHANG Jinsong, LIU Jiaming, WU Zhixin. Electromagnetic Scattering Characteristic Extraction and Imaging Recognition Algorithm: A Review[J]. Journal of Radars, 2022, 11(6): 921-942. doi: 10.12000/JR22232
    [5]CHEN Jian, DU Lan, LIAO Leiyao. Survey of Radar HRRP Target Recognition Based on Parametric Statistical Model[J]. Journal of Radars, 2022, 11(6): 1020-1047. doi: 10.12000/JR22127
    [6]KANG Jian, WANG Zhirui, ZHU Ruoxin, SUN Xian. Supervised Contrastive Learning Regularized High-resolution Synthetic Aperture Radar Building Footprint Generation[J]. Journal of Radars, 2022, 11(1): 157-167. doi: 10.12000/JR21124
    [7]ZHOU Ningning, ZHU Shitao, NIAN Yiheng, TIAN Chunming, ZHANG Anxue. An Intelligent Target Feature Recognition Method Based on Multi-mode OAM Beams[J]. Journal of Radars, 2021, 10(5): 760-772. doi: 10.12000/JR21056
    [8]CHEN Xiaolong, CHEN Weishi, RAO Yunhua, HUANG Yong, GUAN Jian, DONG Yunlong. Progress and Prospects of Radar Target Detection and Recognition Technology for Flying Birds and Unmanned Aerial Vehicles (in English)[J]. Journal of Radars, 2020, 9(5): 803-827. doi: 10.12000/JR20068
    [9]LI Weijie, YANG Wei, LI Xiang, LIU Yongxiang. Robust High Resolution Range Profile Recognition Method for Radar Targets in Noisy Environments[J]. Journal of Radars, 2020, 9(4): 622-631. doi: 10.12000/JR19093
    [10]Zhang Pengfei, Li Gang, Huo Chaoying, Yin Hongcheng. Classification of Drones Based on Micro-Doppler Radar Signatures Using Dual Radar Sensors[J]. Journal of Radars, 2018, 7(5): 557-564. doi: 10.12000/JR18061
    [11]He Qifang, Zhang Qun, Luo Ying, Li Kaiming. A Sinusoidal Frequency Modulation Fourier-Bessel Transform and its Application to Micro-Doppler Feature Extraction[J]. Journal of Radars, 2018, 7(5): 593-601. doi: 10.12000/JR17069
    [12]Yang Qi, Deng Bin, Wang Hongqiang, Qin Yuliang. Advancements in Research on Micro-motion Feature Extraction in the Terahertz Region[J]. Journal of Radars, 2018, 7(1): 22-45. doi: 10.12000/JR17087
    [13]Zhang Qun, Hu Jian, Luo Ying, Chen Yijun. Research Progresses in Radar Feature Extraction, Imaging, and Recognition of Target with Micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547. doi: 10.12000/JR18049
    [14]Zhao Feixiang, Liu Yongxiang, Huo Kai. Radar Target Recognition Based on Stacked Denoising Sparse Autoencoder[J]. Journal of Radars, 2017, 6(2): 149-156. doi: 10.12000/JR16151
    [15]Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078
    [16]Kang Miao, Ji Kefeng, Leng Xiangguang, Xing Xiangwei, Zou Huanxin. SAR Target Recognition with Feature Fusion Based on Stacked Autoencoder[J]. Journal of Radars, 2017, 6(2): 167-176. doi: 10.12000/JR16112
    [17]Xiang Yin, Zhang Kai, Hu Cheng. A NUFFT Based Step-frequency Chirp Signal High Resolution Imaging Algorithm and Target Recognition Algorithm[J]. Journal of Radars, 2015, 4(6): 639-647. doi: 10.12000/JR15083
    [18]HAN Ping, WANG Huan. Synthetic Aperture Radar Target Feature Extraction and Recognition Based on Improved Sparsity Preserving Projections[J]. Journal of Radars, 2015, 4(6): 674-680. doi: 10.12000/JR15068
    [19]Wang Lu, Zhang Fan, Li Wei, Xie Xiao-ming, Hu Wei. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction[J]. Journal of Radars, 2015, 4(6): 658-665. doi: 10.12000/JR15076
    [20]Sun Zhi-jun, Xue Lei, Xu Yang-ming, Sun Zhi-yong. Shared Representation of SAR Target and Shadow Based on Multilayer Auto-encoder[J]. Journal of Radars, 2013, 2(2): 195-202. doi: 10.3724/SP.J.1300.2012.20085
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.1 %FULLTEXT: 31.1 %META: 55.1 %META: 55.1 %PDF: 13.9 %PDF: 13.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.8 %其他: 10.8 %其他: 0.5 %其他: 0.5 %Rochester: 0.2 %Rochester: 0.2 %San Mateo: 0.2 %San Mateo: 0.2 %上海: 2.2 %上海: 2.2 %东京: 0.5 %东京: 0.5 %临沂: 0.3 %临沂: 0.3 %内江: 0.3 %内江: 0.3 %北京: 7.9 %北京: 7.9 %十堰: 0.8 %十堰: 0.8 %南京: 1.9 %南京: 1.9 %南宁: 0.3 %南宁: 0.3 %南昌: 0.3 %南昌: 0.3 %合肥: 1.2 %合肥: 1.2 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 1.0 %嘉兴: 1.0 %天津: 1.4 %天津: 1.4 %太原: 0.3 %太原: 0.3 %威海: 0.8 %威海: 0.8 %安康: 1.2 %安康: 1.2 %宣城: 1.2 %宣城: 1.2 %常州: 0.7 %常州: 0.7 %常德: 0.2 %常德: 0.2 %平顶山: 0.3 %平顶山: 0.3 %广州: 2.7 %广州: 2.7 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %开封: 2.4 %开封: 2.4 %张家口: 10.5 %张家口: 10.5 %张家界: 0.7 %张家界: 0.7 %成都: 6.3 %成都: 6.3 %扬州: 1.4 %扬州: 1.4 %无锡: 0.8 %无锡: 0.8 %昆明: 2.0 %昆明: 2.0 %杭州: 1.4 %杭州: 1.4 %松原: 0.5 %松原: 0.5 %武汉: 0.5 %武汉: 0.5 %洛杉矶: 0.2 %洛杉矶: 0.2 %淄博: 0.3 %淄博: 0.3 %温州: 0.7 %温州: 0.7 %渭南: 0.5 %渭南: 0.5 %湖州: 1.2 %湖州: 1.2 %漯河: 6.6 %漯河: 6.6 %石家庄: 0.3 %石家庄: 0.3 %绍兴: 0.5 %绍兴: 0.5 %芒廷维尤: 9.1 %芒廷维尤: 9.1 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 1.0 %芝加哥: 1.0 %苏州: 0.8 %苏州: 0.8 %蚌埠: 0.3 %蚌埠: 0.3 %襄阳: 0.2 %襄阳: 0.2 %西宁: 2.7 %西宁: 2.7 %西安: 6.3 %西安: 6.3 %西雅图: 0.2 %西雅图: 0.2 %赤峰: 0.2 %赤峰: 0.2 %辽阳: 0.2 %辽阳: 0.2 %邢台: 0.2 %邢台: 0.2 %邯郸: 0.8 %邯郸: 0.8 %郑州: 0.5 %郑州: 0.5 %鄂州: 0.2 %鄂州: 0.2 %重庆: 0.3 %重庆: 0.3 %银川: 0.2 %银川: 0.2 %长沙: 1.2 %长沙: 1.2 %随州: 0.2 %随州: 0.2 %青岛: 0.2 %青岛: 0.2 %黄冈: 0.8 %黄冈: 0.8 %其他其他RochesterSan Mateo上海东京临沂内江北京十堰南京南宁南昌合肥哥伦布嘉兴天津太原威海安康宣城常州常德平顶山广州库比蒂诺开封张家口张家界成都扬州无锡昆明杭州松原武汉洛杉矶淄博温州渭南湖州漯河石家庄绍兴芒廷维尤芜湖芝加哥苏州蚌埠襄阳西宁西安西雅图赤峰辽阳邢台邯郸郑州鄂州重庆银川长沙随州青岛黄冈

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(325) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint