Volume 4 Issue 1
Apr.  2015
Turn off MathJax
Article Contents
Yang Wei, Chen Jie, Li Chun-sheng. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction[J]. Journal of Radars, 2015, 4(1): 29-37. doi: 10.12000/JR15017
Citation: Yang Wei, Chen Jie, Li Chun-sheng. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction[J]. Journal of Radars, 2015, 4(1): 29-37. doi: 10.12000/JR15017

SAR Data Fusion Imaging Method Oriented to Target Feature Extraction

DOI: 10.12000/JR15017
  • Received Date: 2015-01-26
  • Rev Recd Date: 2015-03-24
  • Publish Date: 2015-02-28
  • To deal with the difficulty for target outlines extracting precisely due to neglect of target scattering characteristic variation during the processing of high-resolution space-borne SAR data, a novel fusion imaging method is proposed oriented to target feature extraction. Firstly, several important aspects that affect target feature extraction and SAR image quality are analyzed, including curved orbit, stop-and-go approximation, atmospheric delay, and high-order residual phase error. Furthermore, the corresponding compensation methods are addressed as well. Based on the analysis, the mathematical model of SAR echo combined with target space-time spectrum is established for explaining the space-time-frequency change rule of target scattering characteristic. Moreover, a fusion imaging strategy and method under high-resolution and ultra-large observation angle range conditions are put forward to improve SAR quality by fusion processing in range-doppler and image domain. Finally, simulations based on typical military targets are used to verify the effectiveness of the fusion imaging method.

     

  • loading
  • [1]
    Prats-Iraola P, Scheiber R, Rodriguez-Cassola M, et al.. High precision SAR focusing of TerraSAR-X experimental staring spotlight data[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012: 3576-3579.
    [2]
    Mittermayer J, Wollstadt S, Prats-Iraola P, et al.. Staring spotlight imaging with TerraSAR-X[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 2012: 1606-1609.
    [3]
    Mittermayer J, Wollstadt S, Prats-Iraola P, et al.. The TerraSAR-X staring spotlight mode concept[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3695-3706.
    [4]
    Kim J-h, Heer C, and Schaefer C. Astrium technology development for next generation SAR[C]. 2013 IEEE International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 2013: 24-26.
    [5]
    Gantert S, Kern A, Dring R, et al.. The future of X-band SAR: TerraSAR-X next generation and WorldSAR constellation[C]. 2013 IEEE International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 2013: 20-23.
    [6]
    Gantert S, Kern A, Dring R, et al.. TERRASAR-X next generationprogram overview[C]. 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec, Canada, 2014: 1-4.
    [7]
    林世斌, 李悦丽, 严少石, 等. 平地假设对合成孔径雷达时域 算法成像质量的影响研究[J]. 雷达学报, 2012, 1(3): 309-313. Lin Shi-bin, Li Yue-li, Yan Shao-shi, et al.. Study of effects of flat surface assumption to synthetic aperture radar timedomain algorithms imaging quality[J]. Journal of Radars, 2012, 1(3): 309-313.
    [8]
    Gumming G and Wong H. Synthetic Aperture Radar Imaging Algorithm and Implementation[M]. Beijing: Electronic Industries Press, 2007: 155-191.
    [9]
    Lanari R and Hensley S. Chirp z-transform based SPECAN approach for phase-preserving ScanSAR image generation[J]. IEE Proceedings-Radar, Sonar and Navigation, 1998, 145(5): 254-261.
    [10]
    Raney R K, Runge H, Bamler R, et al.. Precision SAR processing using chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 786-799.
    [11]
    Bamler R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 706-713.
    [12]
    Prats-Iraola P, Scheiber R, Rodriguez-Cassola M, et al.. On the processing of very high resolution spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6003-6016.
    [13]
    Yang W, Chen J, Zeng H C, et al.. A novel three-step image formation scheme for unified focusing on spaceborne SAR data[J]. Progress In Electromagnetics Research, 2013, 137: 621-642.
    [14]
    Jiang Yan-nan, et al.. FDTD application of targets electromagnetic scattering in layered space[J]. Telkomnika Indonesian Journal of Electrical Engineering, 2013, 11(12): 7682-7688.
    [15]
    Li X, Song J, and Sun Y. Information and Communication Technology for Education (2 Volume Set): Multi-band SAR image fusion study based on NSCT and PCNN[M]. Hong Kong Education Society, Hong Kong, 2014, DOI: 10.2495/ICTE130571.
    [16]
    Yang Zhi-xiang. Application of fusion of multi-polarization SAR images in investigation of coastal tidal flats[J]. Yangtze River, 2013, 44(5): 52-60.
    [17]
    Benediktsson J A, Swain P H, and Ersoy O K. Neural network approaches versus statistical methods in classification of multisource remote sensing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 540-551.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3143) PDF downloads(1468) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint