Wang Xuesong. Status and Prospects of Radar Polarimetry Techniques[J]. Journal of Radars, 2016, 5(2): 119-131. doi: 10.12000/JR16039
Citation: JIN Biao, LI Cong, and ZHANG Zhenkai. Group target track initiation method aided by echo amplitude information[J]. Journal of Radars, 2020, 9(4): 723–729. doi: 10.12000/JR19088

Group Target Track Initiation Method Aided by Echo Amplitude Information

DOI: 10.12000/JR19088
Funds:  The National Natural Science Foundation of China (61701416, 61871203), The Project funded by China Postdoctoral Science Foundation (2017M613214)
More Information
  • Corresponding author: JIN Biao, biaojin@just.edu.cn
  • Received Date: 2019-09-27
  • Rev Recd Date: 2019-12-17
  • Available Online: 2020-01-20
  • Publish Date: 2020-08-28
  • Track initiation is the first important step in group target tracking, and it has a direct effect on the quality of the overall procedure. Traditional radar target tracking methods only utilize information about the target position to detect group numbers, but they do not use information relating to echo amplitude. Tracks are thus easily lost, as the numbers of detected groups and equivalent measurements are inaccurate. This paper proposes a group target track initiation method aided by echo amplitude information to ameliorate these problems. In this respect, target position and echo amplitude information is used to detect the number of target groups, and equivalent measurements are then computed using amplitude weighting and position weighting. Echo amplitude information is employed in the step of detecting group target numbers and computing the equivalent measurements, and group target tracks are subsequently initialized using the modified logic method. The proposed method can be used to correctly detect the number of target groups when the number is previously unknown. Furthermore, the method reduces the rate of track loss and improves the performance of group target tracking. The effectiveness of the proposed method is validated by the simulation results.

     

  • [1]
    NIEDFELDT P C and BEARD R W. Convergence and complexity analysis of recursive-RANSAC: A new multiple target tracking algorithm[J]. IEEE Transactions on Automatic Control, 2016, 61(2): 456–461.
    [2]
    ÚBEDA-MEDINA L, GARCÍA-FERNÁNDEZ Á F, and GRAJAL J. Adaptive auxiliary particle filter for track-before-detect with multiple targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2317–2330. doi: 10.1109/TAES.2017.2691958
    [3]
    ZHU Yun, WANG Jun, and LIANG Shuang. Efficient joint probabilistic data association filter based on Kullback-Leibler divergence for multi-target tracking[J]. IET Radar, Sonar & Navigation, 2017, 11(10): 1540–1548.
    [4]
    VIVONE G and BRACA P. Joint probabilistic data association tracker for extended target tracking applied to X-band marine radar data[J]. IEEE Journal of Oceanic Engineering, 2016, 41(4): 1007–1019. doi: 10.1109/JOE.2015.2503499
    [5]
    LIAN Feng, HAN Chongzhao, LIU Weifeng, et al. Unified cardinalized probability hypothesis density filters for extended targets and unresolved targets[J]. Signal Processing, 2012, 92(7): 1729–1744. doi: 10.1016/j.sigpro.2012.01.009
    [6]
    CAO Xianbin, JIANG Xiaolong, LI Xiaomei, et al. Correlation-based tracking of multiple targets with hierarchical layered structure[J]. IEEE Transactions on Cybernetics, 2018, 48(1): 90–102. doi: 10.1109/TCYB.2016.2625320
    [7]
    王聪, 王海鹏, 何友, 等. 基于ICP的稳态部分可辨编队目标精细跟踪算法[J]. 北京航空航天大学学报, 2017, 43(6): 1123–1131.

    WANG Cong, WANG Haipeng, HE You, et al. Refined tracking algorithm for steady partly resolvable group targets based on ICP[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1123–1131.
    [8]
    方琳琳, 周超, 王锐, 等. 昆虫目标雷达散射截面积特征辅助跟踪算法[J]. 雷达学报, 2019, 8(5): 598–605. doi: 10.12000/JR19067

    FANG Linlin, ZHOU Chao, WANG Rui, et al. RCS feature-aided insect target tracking algorithm[J]. Journal of Radars, 2019, 8(5): 598–605. doi: 10.12000/JR19067
    [9]
    封洪强. 雷达在昆虫学研究中的应用[J]. 植物保护, 2011, 37(5): 1–13. doi: 10.3969/j.issn.0529-1542.2011.05.001

    FENG Hongqiang. Applications of radar in entomological research[J]. Plant Protection, 2011, 37(5): 1–13. doi: 10.3969/j.issn.0529-1542.2011.05.001
    [10]
    耿文东. 基于群目标几何中心的群起始算法研究[J]. 系统工程与电子技术, 2008, 30(2): 269–272. doi: 10.3321/j.issn:1001-506X.2008.02.019

    GENG Wendong. Study of group-initialization method based on group-target center of geometry[J]. Systems Engineering and Electronics, 2008, 30(2): 269–272. doi: 10.3321/j.issn:1001-506X.2008.02.019
    [11]
    周大庆, 耿文东, 倪春雷. 基于编队目标重心的航迹起始方法研究[J]. 无线电工程, 2010, 40(2): 32–34. doi: 10.3969/j.issn.1003-3106.2010.02.011

    ZHOU Daqing, GENG Wendong, and NI Chunlei. Study of track initiation method based on barycenter of formation target[J]. Radio Engineering of China, 2010, 40(2): 32–34. doi: 10.3969/j.issn.1003-3106.2010.02.011
    [12]
    KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042–1059. doi: 10.1109/TAES.2008.4655362
    [13]
    韩玉兰, 朱洪艳, 韩崇昭. 采用随机矩阵的多扩展目标滤波器[J]. 西安交通大学学报, 2015, 49(7): 98–104. doi: 10.7652/xjtuxb201507017

    HAN Yulan, ZHU Hongyan, and HAN Chongzhao. A multi-target filter based on random matrix[J]. Journal of Xian Jiaotong University, 2015, 49(7): 98–104. doi: 10.7652/xjtuxb201507017
    [14]
    JIN Biao, JIU Bo, SU Tao, et al. Switched Kalman filter-interacting multiple model algorithm based on optimal autoregressive model for manoeuvring target tracking[J]. IET Radar, Sonar & Navigation, 2015, 9(2): 199–209.
    [15]
    GNING A, MIHAYLOVA L, MASKELL S, et al. Ground target group structure and state estimation with particle filtering[C]. The 2008 11th International Conference on Information Fusion, Cologne, Germany, 2008: 1–8.
    [16]
    LI Yunxiang, XIAO Huaitie, SONG Zhiyong, et al. A new multiple extended target tracking algorithm using PHD filter[J]. Signal Processing, 2013, 93(12): 3578–3588. doi: 10.1016/j.sigpro.2013.05.011
    [17]
    LAN Jian and LI X R. Extended-object or group-target tracking using random matrix with nonlinear measurements[J]. IEEE Transactions on Signal Processing, 2019, 67(19): 5130–5142. doi: 10.1109/TSP.2019.2935866
    [18]
    MIHAYLOVA L, CARMI A Y, SEPTIER F, et al. Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking[J]. Digital Signal Processing, 2014, 25: 1–16. doi: 10.1016/j.dsp.2013.11.006
    [19]
    DANIYAN A, LAMBOTHARAN S, DELIGIANNIS A, et al. Bayesian multiple extended target tracking using labeled random finite sets and splines[J]. IEEE Transactions on Signal Processing, 2018, 66(22): 6076–6091. doi: 10.1109/TSP.2018.2873537
    [20]
    何友, 修建娟, 关欣. 雷达数据处理及应用[M]. 3版. 北京: 电子工业出版社, 2013: 108–174.

    HE You, XIU Jianjuan, and GUAN Xin. Radar Data Processing with Applications[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2013: 108–174.
  • Relative Articles

    [1]WAN Hao, LIANG Jing. HRRP Unsupervised Target Feature Extraction Method Based on Multiple Contrastive Loss in Radar Sensor Networks[J]. Journal of Radars. doi: 10.12000/JR24200
    [2]WANG Binglu, JIN Yang, ZHANG Lei, ZHENG Le, ZHOU Tianfei. Collaborative Perception Method Based on Multisensor Fusion[J]. Journal of Radars, 2024, 13(1): 87-96. doi: 10.12000/JR23184
    [3]ZHANG Xuqi, ZHOU Bin, LIU Haiqi, LIAO Ji, LIU Yongxu, YANG Guang. A Scalable Method for Group Target Tracking Using Multisensor with Limited Field of Views[J]. Journal of Radars, 2024, 13(6): 1220-1238. doi: 10.12000/JR24054
    [4]WANG Zengfu, SHAO Yi, QI Dengliang, JIN Shuling. Consistency-based Air Target Height Estimation and Location in Distributed Space-based Radar Network[J]. Journal of Radars, 2023, 12(6): 1249-1262. doi: 10.12000/JR23157
    [5]ZHU Peikun, LIANG Jing, LUO Zihan, SHEN Xiaofeng. Waveform Selection Method of Cognitive Radar Target Tracking Based on Reinforcement Learning[J]. Journal of Radars, 2023, 12(2): 412-424. doi: 10.12000/JR22239
    [6]DA Kai, YANG Ye, ZHU Yongfeng, FU Qiang. Multitarget Tracking Using Distributed Radar with Partially Overlapping Fields of Views[J]. Journal of Radars, 2022, 11(3): 459-468. doi: 10.12000/JR21183
    [7]SHI Chenguang, WANG Yijie, DAI Xiangrong, ZHOU Jianjiang. Joint Transmit Resources and Trajectory Planning for Target Tracking in Airborne Radar Networks[J]. Journal of Radars, 2022, 11(5): 778-793. doi: 10.12000/JR22005
    [8]XUE Cewen, FENG Xuan, LI Xiaotian, LIANG Wenjing, ZHOU Haoqiu, WANG Ying. Multi-polarization Data Fusion Analysis of Full-Polarimetric Ground Penetrating Radar[J]. Journal of Radars, 2021, 10(1): 74-85. doi: 10.12000/JR20104
    [9]JIN Biao, LI Cong, ZHANG Zhenkai. Group Target Track Initiation Method Aided by Echo Amplitude Information[J]. Journal of Radars, 2020, 9(4): 723-729. doi: 10.12000/JR19088
    [10]FANG Linlin, ZHOU Chao, WANG Rui, HU Cheng. RCS Feature-aided Insect Target Tracking Algorithm[J]. Journal of Radars, 2019, 8(5): 598-605. doi: 10.12000/JR19067
    [11]Hui Ye, Bai Xueru. RID Image Series-based High-resolution Three-dimensional Imaging of Micromotion Targets[J]. Journal of Radars, 2018, 7(5): 548-556. doi: 10.12000/JR18056
    [12]Ge Jianjun, Li Chunxia. A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy[J]. Journal of Radars, 2017, 6(6): 587-593. doi: 10.12000/JR17081
    [13]Lu Yanxi, He Zishu, Cheng Ziyang, Liu Shuangli. Joint Selection of Transmitters and Receivers in Distributed Multi-input Multi-output Radar Network for Multiple Targets Tracking[J]. Journal of Radars, 2017, 6(1): 73-80. doi: 10.12000/JR16106
    [14]Yang Wei, Chen Jie, Li Chun-sheng. SAR Data Fusion Imaging Method Oriented to Target Feature Extraction[J]. Journal of Radars, 2015, 4(1): 29-37. doi: 10.12000/JR15017
    [15]Yang Jin-long, Liu Feng-mei, Wang Dong, Ge Hong-wei. Affinity Propagation Based Measurement Partition Algorithm for Multiple Extended Target Tracking[J]. Journal of Radars, 2015, 4(4): 452-459. doi: 10.12000/JR15003
    [16]Qi Lin, Wang Hai-peng, Liu Yu. Track segment association algorithm based on statistical binary thresholds[J]. Journal of Radars, 2015, 4(3): 301-308. doi: 10.12000/JR14077
    [17]Zhu Hong-wei, Tang Xiao-ming, He You. Observability Analysis of Sensor Bias Based on the Track-independent Model[J]. Journal of Radars, 2013, 2(4): 454-460. doi: 10.3724/SP.J.1300.2013.13068
    [18]Li Wei, Wang Xing-liang, Zou Kun, Xu Yi-meng, Zhang Qun. Anti Deceptive Jamming for MIMO Radar Based on Data Fusion and Notch Filtering (in English)[J]. Journal of Radars, 2012, 1(3): 246-252. doi: 10.3724/SP.J.1300.2012.20060
    [19]Yuan Ding-bo, Meng Cang-zhen, Xu Jia, Peng Ying-ning. Target Association of Heterogeneous Sensors Based on Nearest-neighbor and Topology[J]. Journal of Radars, 2012, 1(4): 393-398. doi: 10.3724/SP.J.1300.2012.20083
    [20]Meng Cang-zhen, Yuan Ding-bo, Xu Jia, Peng Shi-bao, Wang Xiao-jun. A New Target-correlation Algorithm for Heterogeneous Sensors Based on Neural Network Classification[J]. Journal of Radars, 2012, 1(4): 399-405. doi: 10.3724/SP.J.1300.2012.20087
  • Cited by

    Periodical cited type(4)

    1. 王进,冷祥光,孙忠镇,马晓杰,杨阳,计科峰. 复杂运动舰船目标SAR成像空/时变散焦特性研究. 系统工程与电子技术. 2024(07): 2237-2255 .
    2. 曹晔,闫海鹏,张剑琦,师亚辉,张振华. 高动态条件下舰船目标SAR成像算法研究. 遥测遥控. 2019(04): 40-48 .
    3. 魏翔飞,王小青,种劲松. 一种基于局域中心频率的SAR图像舰船方位向速度估计方法. 电子与信息学报. 2018(09): 2242-2249 .
    4. 杨传安,齐向阳,李宁. 一种基于参数估计的运动舰船SAR成像方法. 国外电子测量技术. 2017(05): 30-36 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.2 %FULLTEXT: 11.2 %META: 76.3 %META: 76.3 %PDF: 12.5 %PDF: 12.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.8 %其他: 17.8 %其他: 0.4 %其他: 0.4 %Absecon: 0.1 %Absecon: 0.1 %Central District: 0.0 %Central District: 0.0 %China: 0.7 %China: 0.7 %Herndon: 0.5 %Herndon: 0.5 %India: 0.1 %India: 0.1 %[]: 0.4 %[]: 0.4 %上海: 1.0 %上海: 1.0 %东京: 0.0 %东京: 0.0 %东莞: 0.3 %东莞: 0.3 %九江: 0.1 %九江: 0.1 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %佛山: 0.0 %佛山: 0.0 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.0 %兰辛: 0.0 %包头: 0.1 %包头: 0.1 %北京: 16.3 %北京: 16.3 %北京市: 0.0 %北京市: 0.0 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 0.7 %南京: 0.7 %南昌: 0.8 %南昌: 0.8 %南昌市: 0.1 %南昌市: 0.1 %台北: 0.0 %台北: 0.0 %台州: 0.0 %台州: 0.0 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %夏尔迦: 0.1 %夏尔迦: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.5 %大连: 0.5 %天津: 0.3 %天津: 0.3 %太原: 0.3 %太原: 0.3 %宣城: 0.2 %宣城: 0.2 %巴中: 0.0 %巴中: 0.0 %布里斯班: 0.1 %布里斯班: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.0 %常德: 0.0 %广州: 0.3 %广州: 0.3 %广州市天河区: 0.1 %广州市天河区: 0.1 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %张家口: 1.2 %张家口: 1.2 %德阳: 0.1 %德阳: 0.1 %成都: 1.2 %成都: 1.2 %新乡: 0.1 %新乡: 0.1 %无锡: 0.0 %无锡: 0.0 %昆明: 0.0 %昆明: 0.0 %杭州: 1.4 %杭州: 1.4 %桂林: 0.3 %桂林: 0.3 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.0 %沈阳: 0.0 %泰安: 0.1 %泰安: 0.1 %泰州: 0.1 %泰州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.0 %济南: 0.0 %深圳: 0.6 %深圳: 0.6 %温州: 0.1 %温州: 0.1 %渭南: 0.3 %渭南: 0.3 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.0 %漳州: 0.0 %烟台: 0.1 %烟台: 0.1 %珠海: 0.0 %珠海: 0.0 %石家庄: 0.7 %石家庄: 0.7 %石家庄市: 0.0 %石家庄市: 0.0 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.3 %绵阳: 0.3 %聊城: 0.1 %聊城: 0.1 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 10.8 %芒廷维尤: 10.8 %芝加哥: 0.9 %芝加哥: 0.9 %莫斯科: 0.0 %莫斯科: 0.0 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.0 %衡水: 0.0 %衢州: 0.0 %衢州: 0.0 %西宁: 32.2 %西宁: 32.2 %西安: 2.0 %西安: 2.0 %运城: 0.1 %运城: 0.1 %郑州: 0.3 %郑州: 0.3 %鄂州: 0.2 %鄂州: 0.2 %重庆: 0.5 %重庆: 0.5 %金华: 0.0 %金华: 0.0 %长沙: 0.6 %长沙: 0.6 %青岛: 0.6 %青岛: 0.6 %香港: 0.0 %香港: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %其他其他AbseconCentral DistrictChinaHerndonIndia[]上海东京东莞九江伊利诺伊州佛山兰州兰辛包头北京北京市华盛顿州南京南昌南昌市台北台州合肥哈尔滨嘉兴夏尔迦大庆大连天津太原宣城巴中布里斯班常州常德广州广州市天河区库比蒂诺张家口德阳成都新乡无锡昆明杭州桂林武汉沈阳泰安泰州洛阳济南深圳温州渭南湖州湘潭漯河漳州烟台珠海石家庄石家庄市纽约绍兴绵阳聊城舟山芒廷维尤芝加哥莫斯科蚌埠衡水衢州西宁西安运城郑州鄂州重庆金华长沙青岛香港齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3284) PDF downloads(207) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint