Wu Yong, Wang Jun. Application of Mixed Kalman Filter to Passive Radar Target Tracking[J]. Journal of Radars, 2014, 3(6): 652-659. doi: 10.12000/JR14113
Citation: Yu Lingjuan, Wang Yadong, Xie Xiaochun, Lin Yun, Hong Wen. SAR ATR Based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622-631. doi: 10.12000/JR18066

SAR ATR Based on FCNN and ICAE

DOI: 10.12000/JR18066
Funds:  The National Natural Science Foundation of China (61431018, 61501210, 61571421), The Natural Science Foundation of Jiangxi Province (20161BAB202054), The Science and Technology Project of Jiangxi Provincial Education Department (GJJ150684, GJJ170825)
  • Received Date: 2018-08-31
  • Rev Recd Date: 2018-10-20
  • Publish Date: 2018-10-28
  • In recent years, Synthetic Aperture Radar (SAR) image target recognition based on the Convolutional Neural Network (CNN) has attracted a significant amount of attention. Fully CNN (FCNN) is a structural improvement of the CNN, which features a higher recognition rate than CNN, but it still requires a large number of labeled data in the training process. This study aims to propose a method of SAR image target recognition based on FCNN and Improved Convolutional Auto-Encoder (ICAE), where several parameters of FCNN are initialized by the parameters of the ICAE encoder. These parameters are obtained in the unsupervised training mode. Then, the FCNN is trained by the labeled training samples. The experimental results on 10 kinds of target classification based on the MSTAR datasets show that this method cannot only achieve an average of 98.14% correct recognition rate but also feature a strong anti-noise capability when the labeled training samples are unexpanded.

     

  • [1]
    Wagner S A. SAR ATR by a combination of convolutional neural network and support vector machines[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2861–2872. DOI: 10.1109/TAES.2016.160061
    [2]
    Chen S Z, Wang H P, Xu F, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. DOI: 10.1109/TGRS.2016.2551720
    [3]
    Zhang Z M, Wang H P, Xu F, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177–7188. DOI: 10.1109/TGRS.2017.2743222
    [4]
    Furukawa H. Deep learning for target classification from SAR imagery: Data augmentation and translation invariance[J]. IEICE Technical Report, 2017, 117(182): 13–17.
    [5]
    徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. DOI: 10.12000/JR16130

    Xu Feng, Wang Haipeng, and Jin Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. DOI: 10.12000/JR16130
    [6]
    Morgan D A E. Deep convolutional neural networks for ATR from SAR imagery[C]. Proceedings of SPIE 9475, Algorithms for Synthetic Aperture Radar Imagery XXII, Baltimore, Maryland, United States, 2015: 94750F.
    [7]
    Profeta A, Rodriguez A, and Clouse H S. Convolutional neural networks for synthetic aperture radar classification[C]. Proceedings of SPIE 9843, Algorithms for Synthetic Aperture Radar Imagery XXIII, Baltimore, Maryland, United States, 2016: 98430M.
    [8]
    Wilmanski M, Kreucher C, and Lauer J. Modern approaches in deep learning for SAR ATR[C]. Proceedings of SPIE 9843, Algorithms for Synthetic Aperture Radar Imagery XXIII, Baltimore, Maryland, United States, 2016: 98430N.
    [9]
    Wagner S. Combination of convolutional feature extraction and support vector machines for radar ATR[C]. Proceedings of the 17th International Conference on Information Fusion, Salamanca, Spain, 2014: 1–6.
    [10]
    Pei J F, Huang Y L, Huo W B, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2196–2210. DOI: 10.1109/TGRS.2017.2776357
    [11]
    Lin Z, Ji K F, Kang M, et al. Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1091–1095. DOI: 10.1109/LGRS.2017.2698213
    [12]
    Chen S Z and Wang H P. SAR target recognition based on deep learning[C]. Proceedings of 2014 International Conference on Data Science and Advanced Analytics, Shanghai, China, 2015: 541–547.
    [13]
    El Housseini A, Toumi A, and Khenchaf A. Deep learning for target recognition from SAR images[C]. Proceedings of 2017 Seminar on Detection Systems Architectures and Technologies, Algiers, Algeria, 2017: 1–5.
    [14]
    田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320–325. DOI: 10.12000/JR16037

    Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, et al. SAR ATR based on convolutional neural network[J]. Journal of Radars, 2016, 5(3): 320–325. DOI: 10.12000/JR16037
    [15]
    Springenberg J T, Dosovitskiy A, Brox T, et al.. Striving for simplicity: The all convolutional net[OL]. arXiv preprint arXiv:1412.6806, 2015.
    [16]
    Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. DOI: 10.1126/science.1127647
    [17]
    康妙, 计科峰, 冷祥光, 等. 基于栈式自编码器特征融合的SAR图像车辆目标识别[J]. 雷达学报, 2017, 6(2): 167–176. DOI: 10.12000/JR16112

    Kang Miao, Ji Kefeng, Leng Xiangguang, et al. SAR target recognition with feature fusion based on stacked autoencoder[J]. Journal of Radars, 2017, 6(2): 167–176. DOI: 10.12000/JR16112
    [18]
    赵飞翔, 刘永祥, 霍凯. 基于栈式降噪稀疏自动编码器的雷达目标识别方法[J]. 雷达学报, 2017, 6(2): 149–156. DOI: 10.12000/JR16151

    Zhao Feixiang, Liu Yongxiang, and Huo Kai. Radar target recognition based on stacked denoising sparse autoencoder[J]. Journal of Radars, 2017, 6(2): 149–156. DOI: 10.12000/JR16151
    [19]
    Masci J, Meier U, Cireşan D, et al.. Stacked convolutional auto-encoders for hierarchical feature extraction[C]. Proceedings of the 21st International Conference on Artificial Neural Networks on Artificial Neural Networks and Machine Learning – ICANN 2011, Espoo, Finland, 2011: 52–59.
    [20]
    Vincent P, Larochelle H, Bengio Y, et al.. Extracting and composing robust features with denoising autoencoders[C]. Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 2008: 1096–1103.
    [21]
    Rumelhart D E, Hinton G E, and Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533–536. DOI: 10.1038/323533a0
    [22]
    Klambauer G, Unterthiner T, Mayr A, et al.. Self-normalizing neural networks[C]. Proceedings of the 31st Neural Information Processing Systems, Long Beach, CA, United States, 2017: 972–981.
    [23]
    Kingma D P and Ba J L. Adam: A method for stochastic optimization[OL]. arXiv preprint arXiv:1412.6980, 2015.
    [24]
    Dong G G, Wang N, and Kuang G Y. Sparse representation of monogenic signal: With application to target recognition in SAR images[J]. IEEE Signal Processing Letters, 2014, 21(8): 952–956. DOI: 10.1109/LSP.2014.2321565
  • Relative Articles

    [1]LI Zhi, TANG Chengyao, DAI Yongpeng, JIN Tian. Multirotor UAV-borne Vital Signs Sensing Using 4D Imaging Radar[J]. Journal of Radars, 2025, 14(1): 62-72. doi: 10.12000/JR24128
    [2]GAO Zhiqi, SUN Shuchen, HUANG Pingping, QI Yaolong, XU Wei. Improved L1/2 Threshold Iterative High Resolution SAR Imaging Algorithm[J]. Journal of Radars, 2023, 12(5): 1044-1055. doi: 10.12000/JR22243
    [3]WANG Yanfei, LI Heping, HAN Song. Synthetic Aperture Imaging of Antenna Array Coded[J]. Journal of Radars, 2023, 12(1): 1-12. doi: 10.12000/JR23011
    [4]HU Zhanyi. A Note on Visual Semantics in SAR 3D Imaging[J]. Journal of Radars, 2022, 11(1): 20-26. doi: 10.12000/JR21149
    [5]JIN Tian, SONG Yongkun, DAI Yongpeng, HU Xikun, SONG Yongping, ZHOU Xiaolong, QIU Zhifeng. UWB-HA4D-1.0: An Ultra-wideband Radar Human Activity 4D Imaging Dataset[J]. Journal of Radars, 2022, 11(1): 27-39. doi: 10.12000/JR22008
    [6]DENG Likang, ZHANG Shuanghui, ZHANG Chi, LIU Yongxiang. A Multiple-Input Multiple-Output Inverse Synthetic Aperture Radar Imaging Method Based on Multidimensional Alternating Direction Method of Multipliers[J]. Journal of Radars, 2021, 10(3): 416-431. doi: 10.12000/JR20132
    [7]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [8]PAN Jie, WANG Shuai, LI Daojing, LU Xiaochun. High-resolution Wide-swath SAR Moving Target Imaging Technology Based on Distributed Compressed Sensing[J]. Journal of Radars, 2020, 9(1): 166-173. doi: 10.12000/JR19060
    [9]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [10]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [11]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [12]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [13]Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. Compressed Sensing Linear Array SAR Autofocusing Imaging via Semi-definite Programming[J]. Journal of Radars, 2018, 7(6): 664-675. doi: 10.12000/JR17103
    [14]Hu Jingqiu, Liu Falin, Zhou Chongbin, Li Bo, Wang Dongjin. CS-SAR Imaging Method Based on Inverse Omega-K Algorithm[J]. Journal of Radars, 2017, 6(1): 25-33. doi: 10.12000/JR16027
    [15]Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [16]Wang Aichun, Xiang Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1): 57-64. doi: 10.12000/JR16006
    [17]Gu Fufei, Zhang Qun, Yang Qiu, Huo Wenjun, Wang Min. Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator[J]. Journal of Radars, 2016, 5(1): 16-24. doi: 10.12000/JR15035
    [18]He Feng, Yang Yang, Dong Zhen, Liang Dian-nong. Progress and Prospects of Curvilinear SAR 3-D Imaging[J]. Journal of Radars, 2015, 4(2): 130-135. doi: 10.12000/JR14119
    [19]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
    [20]Wu Yi-rong, Hong Wen, Zhang Bing-chen, Jiang Cheng-long, Zhang Zhe, Zhao Yao. Current Developments of Sparse Microwave Imaging[J]. Journal of Radars, 2014, 3(4): 383-395. doi: 10.3724/SP.J.1300.2014.14105
  • Cited by

    Periodical cited type(5)

    1. 布锦钶,李鹏飞,周鹏,周志一,曾祥祝,胡城志,孙兴赛,赵青,张文理. 基于杂波知识图谱驱动的空时自适应处理方法. 物联网技术. 2024(11): 122-126 .
    2. 马晖,胡敦法,师竹雨,刘宏伟. 基于涡旋电磁波的雷达应用研究进展. 现代雷达. 2023(05): 27-41 .
    3. 印必还,何姿,丁大志. 基于旋转多普勒效应的自旋目标转速估计方法. 物理学报. 2023(17): 71-83 .
    4. 罗迎,袁航,袁延鑫. 单频涡旋电磁波雷达旋转目标微动参数提取方法. 信号处理. 2023(09): 1587-1595 .
    5. 张飞飞. 基于槽波和CT成像的矿区煤系地质复杂工作面隐伏构造精细化探测. 能源与环保. 2023(10): 167-171 .

    Other cited types(4)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3081) PDF downloads(415) Cited by(9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint