DING Zihang, XIE Junwei, and WANG Bo. Missing covariance matrix recovery with the FDA-MIMO radar using deep learning method[J]. Journal of Radars, 2023, 12(5): 1112–1124. doi: 10.12000/JR23002
Citation: LIU Qi, YU Weidong, and HONG Wen. Vehicle detection in multi-aspect SAR images based on improved GOFRO[J]. Journal of Radars, 2023, 12(5): 1081–1096. doi: 10.12000/JR23042

Vehicle Detection in Multi-aspect SAR Images Based on Improved GOFRO

DOI: 10.12000/JR23042
Funds:  The National Natural Science Foundation of China (61860206013)
More Information
  • Corresponding author: YU Weidong, yuwd@aircas.ac.cn
  • Received Date: 2023-04-10
  • Rev Recd Date: 2023-05-14
  • Available Online: 2023-05-20
  • Publish Date: 2023-06-20
  • Vehicle targets in urban scenes have the characteristics of random distribution and can be easily disturbed by environmental factors during the detection process. Given the above issues, this paper proposes a detection method that utilizes multi-aspect Synthetic Aperture Radar (SAR) images for stationary vehicle target extraction. In the feature extraction stage, a novel feature extraction method called Multiscale Rotational Gabor Odd Filter-based Ratio Operator (MR-GOFRO) is designed for vehicle targets in multi-aspect SAR images, where the original GOFRO features are improved from four aspects—filter form, feature scale, feature direction and feature level. The improvement allows MR-GOFRO to adapt to possible variations in the target direction, scale, morphology, etc. In the image fusion stage, a Weighted-Non-negative Matrix Factorization (W-NMF) method is developed to adjust the feature weights from various images according to the feature quality. This method can reduce the quality degradation of the fusion features due to mutual interference between different aspects. The proposed method is verified on various airborne multi-aspect image datasets. The experimental results revealed that the feature extraction and feature fusion methods proposed in this paper enhance the detection accuracy by an average of 3.69% and 4.67%, respectively, compared with similar methods.

     

  • [1]
    LEITLOFF J, HINZ S, and STILLA U. Vehicle detection in very high resolution satellite images of city areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2795–2806. doi: 10.1109/TGRS.2010.2043109
    [2]
    PALUBINSKAS G and RUNGE H. Change detection for traffic monitoring in TerraSAR-X imagery[C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: I-169–I-172,
    [3]
    MITTERMAYER J, WOLLSTADT S, PRATS-IRAOLA P, et al. The TerraSAR-X staring spotlight mode concept[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3695–3706. doi: 10.1109/TGRS.2013.2274821
    [4]
    ZOU Bin, QIN Jiang, and ZHANG Lamei. Vehicle detection based on semantic-context enhancement for high-resolution SAR images in complex background[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4503905. doi: 10.1109/LGRS.2021.3139605
    [5]
    MAKSYMIUK O, SCHMITT M, BRENNER A R, et al. First investigations on detection of stationary vehicles in airborne decimeter resolution SAR data by supervised learning[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 3584–3587.
    [6]
    BAUMGARTNER S V and KRIEGER G. Real-time road traffic monitoring using a fast a priori knowledge based SAR-GMTI algorithm[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 1843–1846.
    [7]
    NOVAK L M, OWIRKA G J, and BROWER W S. Performance of 10- and 20-target MSE classifiers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4): 1279–1289. doi: 10.1109/7.892675
    [8]
    EL-DARYMLI K, GILL E W, MCGUIRE P, et al. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review[J]. IEEE Access, 2016, 4: 6014–6058. doi: 10.1109/ACCESS.2016.2611492
    [9]
    CHENG Gong and HAN Junwei. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11–28. doi: 10.1016/j.isprsjprs.2016.03.014
    [10]
    WANG Zhixu, XIN Zhihui, HUANG Xiaoqiao, et al. Overview of SAR Image Feature Extraction and Target Recognition[M]. JAIN L C, KOUNTCHEV R, and SHI Junsheng. 3D Imaging Technologies—Multi-dimensional Signal Processing and Deep Learning. Singapore: Springer, 2021: 69–75.
    [11]
    LI Lu, DU Yuang, and DU Lan. Vehicle target detection network in SAR images based on rectangle-invariant rotatable convolution[J]. Remote Sensing, 2022, 14(13): 3086. doi: 10.3390/rs14133086
    [12]
    YANG Xinpeng, ZHANG Qiang, ZHAO Shixiang, et al. Focal-pyramid-based vehicle segmentation in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4028705. doi: 10.1109/LGRS.2022.3224904
    [13]
    BRENNER A R, ESSEN H, and STILLA U. Representation of stationary vehicles in ultra-high resolution SAR and turntable ISAR images[C]. The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 147–150.
    [14]
    WANG Guoli, WANG Xinchao, FAN Bin, et al. Feature extraction by rotation-invariant matrix representation for object detection in aerial image[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 851–855. doi: 10.1109/LGRS.2017.2683495
    [15]
    SUN Yi, WANG Wenna, ZHANG Qianyu, et al. Improved YOLOv5 with transformer for large scene military vehicle detection on SAR image[C]. The 2022 7th International Conference on Image, Vision and Computing, Xi’an, China, 2022: 87–93.
    [16]
    龙泓琳, 皮亦鸣, 曹宗杰. 基于非负矩阵分解的SAR图像目标识别[J]. 电子学报, 2010, 38(6): 1425–1429.

    LONG Honglin, PI Yiming, and CAO Zongjie. Non-negative matrix factorization for target recognition[J]. Acta Electronica Sinica, 2010, 38(6): 1425–1429.
    [17]
    ZHANG Haichao, NASRABADI N M, ZHANG Yanning, et al. Multi-view automatic target recognition using joint sparse representation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2481–2497. doi: 10.1109/TAES.2012.6237604
    [18]
    MA Wenping, WEN Zelian, WU Yue, et al. Remote sensing image registration with modified SIFT and enhanced feature matching[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 3–7. doi: 10.1109/LGRS.2016.2600858
    [19]
    XIANG Yuming, WANG Feng, WAN Ling, et al. An advanced multiscale edge detector based on Gabor filters for SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1522–1526. doi: 10.1109/LGRS.2017.2720684
    [20]
    PAUL S and PATI U C. A Gabor odd filter-based ratio operator for SAR image matching[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(3): 397–401. doi: 10.1109/LGRS.2018.2872979
    [21]
    张之光, 雷宏. 基于SAR图像样本的本征维数检测人造目标[J]. 电子测量技术, 2016, 39(9): 34–39. doi: 10.3969/j.issn.1002-7300.2016.09.009

    ZHANG Zhiguang and LEI Hong. Man-made targets detection based on intrinsic dimension of SAR image samples[J]. Electronic Measurement Technology, 2016, 39(9): 34–39. doi: 10.3969/j.issn.1002-7300.2016.09.009
    [22]
    ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. HOG-ShipCLSNet: A novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210322. doi: 10.1109/TGRS.2021.3082759
    [23]
    OLUKANMI P O and TWALA B. K-means-sharp: Modified centroid update for outlier-robust k-means clustering[C]. 2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics, Bloemfontein, South Africa, 2017: 14–19,
    [24]
    WU Xin, HONG Danfeng, TIAN Jiaojiao, et al. ORSIm detector: A novel object detection framework in optical remote sensing imagery using spatial-frequency channel features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 57(7): 5146–5158. doi: 10.1109/TGRS.2019.2897139
  • Relative Articles

    [1]WANG Zhirui, ZHAO Liangjin, WANG Yuelei, ZENG Xuan, KANG Jian, YANG Jian, SUN Xian. AIR-PolSAR-Seg-2.0: Polarimetric SAR Ground Terrain Classification Dataset for Large-scale Complex Scenes[J]. Journal of Radars, 2025, 14(2): 353-365. doi: 10.12000/JR24237
    [2]YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198
    [3]DING Jinshan, ZHONG Chao, WEN Liwu, XU Zhong. Joint Detection of Moving Target in Video Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(3): 313-323. doi: 10.12000/JR22036
    [4]HUANG Zhongling, YAO Xiwen, HAN Junwei. Progress and Perspective on Physically Explainable Deep Learning for Synthetic Aperture Radar Image Interpretation(in English)[J]. Journal of Radars, 2022, 11(1): 107-125. doi: 10.12000/JR21165
    [5]YAN Hua, ZHANG Lei, LU Jinwen, XING Xiaoyu, LI Sheng, YIN Hongcheng. Frequency-dependent Factor Expression of the GTD Scattering Center Model for the Arbitrary Multiple Scattering Mechanism[J]. Journal of Radars, 2021, 10(3): 370-381. doi: 10.12000/JR21005
    [6]QUAN Sinong, FAN Hui, DAI Dahai, WANG Wei, XIAO Shunping, WANG Xuesong. Recognition of Ships and Chaff Clouds Based on Sophisticated Polarimetric Target Decomposition[J]. Journal of Radars, 2021, 10(1): 61-73. doi: 10.12000/JR20123
    [7]CUI Xingchao, SU Yi, CHEN Siwei. Polarimetric SAR Ship Detection Based on Polarimetric Rotation Domain Features and Superpixel Technique[J]. Journal of Radars, 2021, 10(1): 35-48. doi: 10.12000/JR20147
    [8]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [9]WANG Xuesong, CHEN Siwei. Polarimetric Synthetic Aperture Radar Interpretation and Recognition: Advances and Perspectives[J]. Journal of Radars, 2020, 9(2): 259-276. doi: 10.12000/JR19109
    [10]HU Cheng, DENG Yunkai, TIAN Weiming, ZENG Tao. A Compensation Method of Nonlinear Atmospheric Phase Applied for GB-InSAR Images[J]. Journal of Radars, 2019, 8(6): 831-840. doi: 10.12000/JR19073
    [11]Hu Dingsheng, Qiu Xiaolan, Lei Bin, Xu Feng. Analysis of Crosstalk Impact on the Cloude-decomposition-based Scattering Characteristic[J]. Journal of Radars, 2017, 6(2): 221-228. doi: 10.12000/JR16129
    [12]Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131
    [13]Wu Jiani, Chen Yongguang, Dai Dahai, Pang Bo, Wang Xuesong. Scattering Mechanism Identification Based on Polarimetric HRRP of Manmade Target[J]. Journal of Radars, 2016, 5(2): 174-181. doi: 10.12000/JR16026
    [14]Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. Journal of Radars, 2016, 5(6): 692-700. doi: 10.12000/JR15132
    [15]Huang Xiaojing, Yang Xiangli, Huang Pingping, Yang Wen. Prototype Theory Based Feature Representation for PolSAR Images[J]. Journal of Radars, 2016, 5(2): 208-216. doi: 10.12000/JR15071
    [16]Yang Ruliang, Dai Bowei, Li Haiying. Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar[J]. Journal of Radars, 2016, 5(2): 132-142. doi: 10.12000/JR16013
    [17]Yan Jian, Li Yang, Yin Qiang, Hong Wen. Freeman-Durden Decomposition with Oriented Dihedral Scattering[J]. Journal of Radars, 2014, 3(5): 574-582. doi: 10.3724/SP.J.1300.2014.14057
    [18]Chong Jin-song, Zhou Xiao-zhong. Survey of Study on Internal Waves Detection in Synthetic Aperture Radar Image[J]. Journal of Radars, 2013, 2(4): 406-421. doi: 10.3724/SP.J.1300.2013.13012
    [19]Wu Yi-rong. Concept on Multidimensional Space Joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135-142. doi: 10.3724/SP.J.1300.2013.13047
  • Cited by

    Periodical cited type(23)

    1. 肖敏睿,王巍,尤明懿,陈新. 存在时频统误差条件下的联合时频差定位与观测站航迹优化方法. 信号处理. 2025(01): 150-160 .
    2. Xin Yang,Hongming Liu,Xiaoke Wang,Wen Yu,Jingqiu Liu,Sipei Zhang. A Fusion Localization Method Based on Target Measurement Error Feature Complementarity and Its Application. Journal of Beijing Institute of Technology. 2024(01): 75-88 .
    3. 任洋,姚金杰,赵昶淳,邹宇,薛晓东. 卫星导航多干扰源直接定位方法. 计算机测量与控制. 2024(04): 159-165+173 .
    4. 罗军,张顺生. 联合自适应LASSO与块稀疏贝叶斯直接定位方法. 雷达科学与技术. 2024(03): 265-274 .
    5. 万鹏武,李文杰,彭康. 混合信道下基于到达时间的快速直接定位算法. 西安邮电大学学报. 2024(02): 20-26 .
    6. Dandan Li,Deyi Wang,Hao Huan. LFM Radar Source Passive Localization Algorithm Based on Range Migration. Journal of Beijing Institute of Technology. 2024(02): 130-140 .
    7. 李俊霞,王欣,黄高见,徐勇军,郝万明,朱政宇,李兴旺. 无源定位技术发展及其展望. 无线电工程. 2024(08): 1825-1846 .
    8. 陈梁栋,黄知涛,王翔,吴癸周. 基于角速度信息先验的固定无源单站直接定位方法. 电子学报. 2024(07): 2190-2200 .
    9. 任洋,姚金杰,赵昶淳. 一种自适应网格细化的卫星干扰源定位方法. 火力与指挥控制. 2024(08): 152-158+165 .
    10. 张炜,杨秋,李昊. 一种分布式一体化传感器异步纯方位跟踪管理方法. 指挥控制与仿真. 2024(06): 43-48 .
    11. 王雨琦,吴楠,张旭,刘丹,王海强,韩笑冬,仲小清,王宁远. 多星分布式无源相干定位方法. 中国空间科学技术. 2023(01): 63-68 .
    12. 陈志坤,翁一鸣,彭冬亮,吴美婵. 基于VEPPSO-EXTRA混合算法的分布式直接定位技术. 电子与信息学报. 2023(02): 664-671 .
    13. 罗迪,尹灿斌,李智. 双星对地面未知辐射源直接定位方法研究. 指挥控制与仿真. 2023(01): 136-143 .
    14. 刘云天,史鑫磊. 多基站非圆信号直接定位:降维PM与泰勒补偿. 太赫兹科学与电子信息学报. 2023(06): 725-733 .
    15. 夏楠,高丹阳,邢宝辉,王亚宁. 基于外辐射源的空中目标直接定位算法. 通信学报. 2023(06): 117-124 .
    16. 唐元春,陈端云,夏炳森. 基于传播算子的卫星导航系统干扰源直接定位方法. 太赫兹科学与电子信息学报. 2023(08): 985-991 .
    17. 张怡霄,王怀习,姚云龙,常超,康凯. 基于聚类与霍夫变换的同型雷达多目标定位算法. 电讯技术. 2023(12): 1885-1893 .
    18. 刘清,谢坚,王伶,王秋红,张兆林. 卫星导航欺骗式干扰源高精度直接定位方法. 电子学报. 2022(05): 1117-1122 .
    19. 韦卓. 基于单站干涉仪测向法的未知辐射源定位技术. 舰船电子工程. 2022(07): 159-161 .
    20. 王裕旗,孙光才,邢孟道,张子敬. 合成孔径无源定位性能分析与参数设计. 电子与信息学报. 2022(09): 3155-3162 .
    21. 刘振,苏晓龙,刘天鹏,彭勃,陈鑫,刘永祥. 基于矩阵差分的远场和近场混合源定位方法. 雷达学报. 2021(03): 432-442 . 本站查看
    22. 金峥嵘,王洁,陈丹彤,赵翼,朱秋明,段洪涛. 基于频谱测绘的辐射源定位. 通信技术. 2021(12): 2644-2649 .
    23. 张国鑫,易伟,孔令讲. 基于1比特量化的大规模MIMO雷达系统直接定位算法. 雷达学报. 2021(06): 970-981 . 本站查看

    Other cited types(22)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1462) PDF downloads(237) Cited by(45)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint