Citation: | Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078 |
[1] |
Qi Zhi-xin, Yeh A G O, Li Xia, et al.. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data[J]. Remote Sensing of Environment, 2012, 118: 21–39. doi: 10.1016/j.rse.2011.11.001
|
[2] |
Liu Bin, Hu Hao, Wang Huan-yu, et al.. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 907–924. doi: 10.1109/TGRS.2012.2203358
|
[3] |
Wang Hui, Chen Zhan-sheng, and Zheng Shi-chao. Preliminary research of Low-RCS moving target detection based on Ka-Band video SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 811–815. doi: 10.1109/LGRS.2017.2679755
|
[4] |
El-DarymliK, Gill E W, and Mcguire P. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review[J]. IEEE Access, 2016, 4: 6014–6058. doi: 10.1109/ACCESS.2016.2611492
|
[5] |
Novak L M, Owirka G J, and Netishen C M. Performance of a high-resolution polarimetric SAR automatic target recognition system[J]. The Lincoln Laboratory Journal, 1993, 6(1): 11–23.
|
[6] |
Saghri J A and DeKelaita A. Exploitation of target shadows in synthetic aperture radar imagery for automatic target recognition[C]. Proceedings of SPIE Volume 6312 Applications of Digital Image Processing XXIX, California, United States, 2006, 6312: 631212. DOI: 10.1117/12.684401.
|
[7] |
Amoon M and Rezai-Rad G A. Automatic target recognition of synthetic aperture radar (SAR) images based on optimal selection of Zernike moments features[J]. IET Computer Vision, 2014, 8(2): 77–85. doi: 10.1049/iet-cvi.2013.0027
|
[8] |
Gerry M J, Potter L C, Gupta I J, et al.. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi: 10.1109/8.785750
|
[9] |
宦若虹, 张平, 潘赟. PCA、ICA和Gabor小波决策融合的SAR目标识别[J]. 遥感学报, 2012, 16(2): 262–274. doi: 10.11834/jrs.20120457
Huan Ruo-hong, Zhang Ping, and Pan Yun. SAR target recognition using PCA, ICA and Gabor wavelet decision fusion[J]. Journal of Remote Sensing, 2012, 16(2): 262–274. doi: 10.11834/jrs.20120457
|
[10] |
Lin Chang, Peng Fei, Wang Bing-hui, et al.. Research on PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm[J]. Journal of Electronic Science and Technology, 2012, 10(4): 352–357.
|
[11] |
Zhang Zheng, Xu Yong, Yang Jian, et al.. A survey of sparse representation: Algorithms and applications[J]. IEEE Access, 2017, 3: 490–530. doi: 10.1109/ACCESS.2015.2430359
|
[12] |
Zhang Hai-chao, Nasrabadi N, Zhang Yan-ning, et al.. Multi-view automatic target recognition using joint sparse representation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2481–2497. doi: 10.1109/TAES.2012.6237604
|
[13] |
Dong Gang-gang, Kuang Gang-yao, Wang Na, et al.. SAR target recognition via Joint sparse representation of monogenicsignal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3316–3328. doi: 10.1109/JSTARS.2015.2436694
|
[14] |
Dong Gang-gang and Kuang Gang-yao. SAR target recognition via sparse representation of Monogenic signal on Grassmann manifolds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1308–1319. doi: 10.1109/JSTARS.2015.2513481
|
[15] |
Sun Yong-gang, Du Lan, Wang Yan, et al.. SAR automatic target recognition based on dictionary learning and joint dynamic sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1777–1781. doi: 10.1109/LGRS.2016.2608578
|
[16] |
Song Sheng-li, Xu Bin, and Yang Jian. SAR target recognition via supervised discriminative dictionary learning and sparse representation of the SAR-HOG feature[J]. Remote Sensing, 2016, 8(8): 683. doi: 10.3390/rs8080683
|
[17] |
Liu Hong-wei, Bo Jiu, Li Fei, et al.. Attributed scattering center extraction algorithm based on sparse representation with dictionary refinement[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2604–2614. doi: 10.1109/TAP.2017.2673764
|
[18] |
Zhang Lei, Yang Meng, and Feng Xiang-chu. Sparse representation or collaborative representation: Which helps face recognition?[C]. Proceedings of IEEE International Conference on Computer Vision, Barcelona, Spain, 2012: 471–478.
|
[19] |
Li Wei, Du Qian, Zhang Fan, et al.. Hyperspectral image classification by fusing collaborative and sparse representations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4178–4187. doi: 10.1109/JSTARS.2016.2542113
|
[20] |
Chi Yue-jie and Porikli F. Classification and Boosting with multiple collaborative representations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1519–1531. doi: 10.1109/TPAMI.2013.236
|
[21] |
Haghighi M S, Vahedian A, and Yazdi H S. Extended decision template presentation for combining classifiers[J]. Expert Systems with Applications, 2011, 38(7): 8414–8418. doi: 10.1016/j.eswa.2011.01.036
|
[22] |
Liu Ming, Wu Yan, Zhao Wei, et al.. Dempster-Shafer fusion of multiple sparse representation and statistical property for SAR target configuration recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1106–1109. doi: 10.1109/LGRS.2013.2287295
|
[23] |
Liu Hai-cang and Li Shu-tao. Decision fusion of sparse representation and support vector machine for SAR image target recognition[J]. Neurocomputing, 2013, 113: 97–104. doi: 10.1016/j.neucom.2013.01.033
|
[24] |
Zhang Xin-zheng, Liu Zhou-ying, Liu Shu-jun, et al.. Sparse coding of 2D-slice Zernike moments for SAR ATR[J]. International Journal of Remote Sensing, 2017, 38(2): 412–431. doi: 10.1080/01431161.2016.1266107
|
[25] |
Xu Yong and Lu Yuwu. Adaptive weighted fusion: A novel fusion approach for image classification[J]. Neurocomputing, 2015, 168: 566–574. doi: 10.1016/j.neucom.2015.05.070
|
1. | 连静,杨勇,谢晓霞,王雪松. 大掠射角对海雷达导引头实测回波特性分析. 系统工程与电子技术. 2024(05): 1535-1543 . ![]() | |
2. | 韩喆璇,于恒力,王中训,刘宁波,孙艳丽. 基于相对多普勒峰高特征的OS-CFAR改进方法. 海军航空大学学报. 2024(04): 475-484 . ![]() | |
3. | 关键,姜星宇,刘宁波,丁昊,黄勇. 海杂波背景下的双极化最大特征值目标检测. 系统工程与电子技术. 2024(11): 3715-3725 . ![]() | |
4. | 张梦雨,王中训,李飞,刘宁波,董云龙. CNN海况等级分类方法的性能. 烟台大学学报(自然科学与工程版). 2023(02): 196-203 . ![]() | |
5. | 关键,刘宁波,王国庆,丁昊,董云龙,黄勇,田凯祥,张梦雨. 雷达对海探测试验与目标特性数据获取——海上目标双极化多海况散射特性数据集. 雷达学报. 2023(02): 456-469 . ![]() | |
6. | 许述文,焦银萍,白晓惠,蒋俊正. 基于频域多通道图特征感知的海面小目标检测. 电子与信息学报. 2023(05): 1567-1574 . ![]() | |
7. | 赵迪,行鸿彦,王海峰,阎妍. 基于SAE-GA-XGBoost算法的海面小目标检测. 雷达科学与技术. 2023(01): 88-96 . ![]() | |
8. | 关键,姜星宇,刘宁波,黄勇,丁昊. 海杂波中目标分数域谱范数特征检测方法. 电子与信息学报. 2023(06): 2162-2170 . ![]() | |
9. | 刘照标,张友益,陈翰. 舰载近程搜索雷达时空二维海杂波建模与仿真. 舰船电子对抗. 2023(03): 70-74 . ![]() | |
10. | 丁昊,朱晨光,刘宁波,王国庆. 高海况条件下海面漂浮小目标特征提取与分析. 海军航空大学学报. 2023(04): 301-312 . ![]() | |
11. | 李宏武,王燊燊,徐秦,祁华峰. 海杂波对机载雷达探测影响研究. 现代电子技术. 2023(20): 101-106 . ![]() | |
12. | 杜延磊,杨晓峰,汪胜,殷君君,杨会章,杨健. 海面雷达散射及其杂波幅度统计特性的空间遍历性数值仿真研究. 系统工程与电子技术. 2023(12): 3806-3818 . ![]() | |
13. | 关键,伍僖杰,丁昊,刘宁波,董云龙,张鹏飞. 基于对角积分双谱的海面慢速小目标检测方法. 电子与信息学报. 2022(07): 2449-2460 . ![]() | |
14. | 董云龙,刘洋,刘宁波,丁昊,关键. 基于雷达方程修正的目标探测距离评估方法. 信号处理. 2022(10): 2102-2113 . ![]() | |
15. | 刘宁波,丁昊,黄勇,董云龙,王国庆,董凯. X波段雷达对海探测试验与数据获取年度进展. 雷达学报. 2021(01): 173-182 . ![]() | |
16. | 丁斌,夏雪,梁雪峰. 基于深度生成对抗网络的海杂波数据增强方法. 电子与信息学报. 2021(07): 1985-1991 . ![]() | |
17. | 时艳玲,刘子鹏,贾邦玲. 样本不平衡下的海杂波弱目标分类研究. 信号处理. 2021(09): 1781-1789 . ![]() | |
18. | 伍僖杰,丁昊,刘宁波,关键. 基于时频脊-Radon变换的海面小目标检测方法. 信号处理. 2021(09): 1599-1611 . ![]() | |
19. | 刘宁波,姜星宇,丁昊,关键. 雷达大擦地角海杂波特性与目标检测研究综述. 电子与信息学报. 2021(10): 2771-2780 . ![]() | |
20. | 杜延磊,高帆,刘涛,杨健. 基于数值仿真的X波段极化SAR海杂波统计建模与特性分析. 系统工程与电子技术. 2021(10): 2742-2755 . ![]() | |
21. | 时艳玲,姚婷婷,郭亚星. 基于图连通密度的海面漂浮小目标检测. 电子与信息学报. 2021(11): 3185-3192 . ![]() | |
22. | 刘用功,尹勇. 目标船感知技术综述. 广州航海学院学报. 2021(04): 1-4+30 . ![]() | |
23. | 陈世超,高鹤婷,罗丰. 基于极化联合特征的海面目标检测方法. 雷达学报. 2020(04): 664-673 . ![]() | |
24. | 关键. 雷达海上目标特性综述. 雷达学报. 2020(04): 674-683 . ![]() | |
25. | 唐先慧,李东,粟嘉,程婉儒,任金芝,李秀琴. 基于AlexNet的自适应杂波智能抑制方法. 信号处理. 2020(12): 2032-2042 . ![]() | |
26. | 王超,孙芹东,张林,王文龙,张小川. 水下声学滑翔机海上目标探测试验与性能评估. 信号处理. 2020(12): 2043-2051 . ![]() | |
27. | 曹成会,张杰,张晰,孟俊敏,毛兴鹏. 低掠射微波雷达的海杂波多方位幅度特性分析. 信号处理. 2020(12): 2085-2098 . ![]() | |
28. | 刘宁波,董云龙,王国庆,丁昊,黄勇,关键,陈小龙,何友. X波段雷达对海探测试验与数据获取. 雷达学报. 2019(05): 656-667 . ![]() | |
29. | 于涵,水鹏朗,施赛楠,杨春娇. 广义Pareto分布海杂波模型参数的组合双分位点估计方法. 电子与信息学报. 2019(12): 2836-2843 . ![]() | |
30. | 王国庆,王朝铺,刘传辉,刘宁波,丁昊. 利用神经网络的海杂波幅度分布参数估计方法. 海军航空工程学院学报. 2019(06): 480-487 . ![]() |