Volume 6 Issue 5
Oct.  2017
Turn off MathJax
Article Contents
Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078
Citation: Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078

SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion

DOI: 10.12000/JR17078
Funds:  The National Natural Science Foundation of China (61301224)
  • Received Date: 2017-08-18
  • Rev Recd Date: 2017-10-22
  • Available Online: 2017-10-27
  • Publish Date: 2017-10-28
  • In this paper, we present a Synthetic Aperture Radar (SAR) image target recognition algorithm based on multi-feature multiple representation learning classifier fusion. First, it extracts three features from the SAR images, namely principal component analysis, wavelet transform, and Two-Dimensional Slice Zernike Moments (2DSZM) features. Second, we harness the sparse representation classifier and the cooperative representation classifier with the above-mentioned features to get six predictive labels. Finally, we adopt classifier fusion to obtain the final recognition decision. We researched three different classifier fusion algorithms in our experiments, and the results demonstrate thatusing Bayesian decision fusion gives thebest recognition performance. The method based on multi-feature multiple representation learning classifier fusion integrates the discrimination of multi-features and combines the sparse and cooperative representation classification performance to gain complementary advantages and to improve recognition accuracy. The experiments are based on the Moving and Stationary Target Acquisition and Recognition (MSTAR) database,and they demonstrate the effectiveness of the proposed approach.

     

  • loading
  • [1]
    Qi Zhi-xin, Yeh A G O, Li Xia, et al.. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data[J]. Remote Sensing of Environment, 2012, 118: 21–39. doi: 10.1016/j.rse.2011.11.001
    [2]
    Liu Bin, Hu Hao, Wang Huan-yu, et al.. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 907–924. doi: 10.1109/TGRS.2012.2203358
    [3]
    Wang Hui, Chen Zhan-sheng, and Zheng Shi-chao. Preliminary research of Low-RCS moving target detection based on Ka-Band video SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 811–815. doi: 10.1109/LGRS.2017.2679755
    [4]
    El-DarymliK, Gill E W, and Mcguire P. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review[J]. IEEE Access, 2016, 4: 6014–6058. doi: 10.1109/ACCESS.2016.2611492
    [5]
    Novak L M, Owirka G J, and Netishen C M. Performance of a high-resolution polarimetric SAR automatic target recognition system[J]. The Lincoln Laboratory Journal, 1993, 6(1): 11–23.
    [6]
    Saghri J A and DeKelaita A. Exploitation of target shadows in synthetic aperture radar imagery for automatic target recognition[C]. Proceedings of SPIE Volume 6312 Applications of Digital Image Processing XXIX, California, United States, 2006, 6312: 631212. DOI: 10.1117/12.684401.
    [7]
    Amoon M and Rezai-Rad G A. Automatic target recognition of synthetic aperture radar (SAR) images based on optimal selection of Zernike moments features[J]. IET Computer Vision, 2014, 8(2): 77–85. doi: 10.1049/iet-cvi.2013.0027
    [8]
    Gerry M J, Potter L C, Gupta I J, et al.. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi: 10.1109/8.785750
    [9]
    宦若虹, 张平, 潘赟. PCA、ICA和Gabor小波决策融合的SAR目标识别[J]. 遥感学报, 2012, 16(2): 262–274. doi: 10.11834/jrs.20120457

    Huan Ruo-hong, Zhang Ping, and Pan Yun. SAR target recognition using PCA, ICA and Gabor wavelet decision fusion[J]. Journal of Remote Sensing, 2012, 16(2): 262–274. doi: 10.11834/jrs.20120457
    [10]
    Lin Chang, Peng Fei, Wang Bing-hui, et al.. Research on PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm[J]. Journal of Electronic Science and Technology, 2012, 10(4): 352–357.
    [11]
    Zhang Zheng, Xu Yong, Yang Jian, et al.. A survey of sparse representation: Algorithms and applications[J]. IEEE Access, 2017, 3: 490–530. doi: 10.1109/ACCESS.2015.2430359
    [12]
    Zhang Hai-chao, Nasrabadi N, Zhang Yan-ning, et al.. Multi-view automatic target recognition using joint sparse representation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2481–2497. doi: 10.1109/TAES.2012.6237604
    [13]
    Dong Gang-gang, Kuang Gang-yao, Wang Na, et al.. SAR target recognition via Joint sparse representation of monogenicsignal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3316–3328. doi: 10.1109/JSTARS.2015.2436694
    [14]
    Dong Gang-gang and Kuang Gang-yao. SAR target recognition via sparse representation of Monogenic signal on Grassmann manifolds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1308–1319. doi: 10.1109/JSTARS.2015.2513481
    [15]
    Sun Yong-gang, Du Lan, Wang Yan, et al.. SAR automatic target recognition based on dictionary learning and joint dynamic sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1777–1781. doi: 10.1109/LGRS.2016.2608578
    [16]
    Song Sheng-li, Xu Bin, and Yang Jian. SAR target recognition via supervised discriminative dictionary learning and sparse representation of the SAR-HOG feature[J]. Remote Sensing, 2016, 8(8): 683. doi: 10.3390/rs8080683
    [17]
    Liu Hong-wei, Bo Jiu, Li Fei, et al.. Attributed scattering center extraction algorithm based on sparse representation with dictionary refinement[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2604–2614. doi: 10.1109/TAP.2017.2673764
    [18]
    Zhang Lei, Yang Meng, and Feng Xiang-chu. Sparse representation or collaborative representation: Which helps face recognition?[C]. Proceedings of IEEE International Conference on Computer Vision, Barcelona, Spain, 2012: 471–478.
    [19]
    Li Wei, Du Qian, Zhang Fan, et al.. Hyperspectral image classification by fusing collaborative and sparse representations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4178–4187. doi: 10.1109/JSTARS.2016.2542113
    [20]
    Chi Yue-jie and Porikli F. Classification and Boosting with multiple collaborative representations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1519–1531. doi: 10.1109/TPAMI.2013.236
    [21]
    Haghighi M S, Vahedian A, and Yazdi H S. Extended decision template presentation for combining classifiers[J]. Expert Systems with Applications, 2011, 38(7): 8414–8418. doi: 10.1016/j.eswa.2011.01.036
    [22]
    Liu Ming, Wu Yan, Zhao Wei, et al.. Dempster-Shafer fusion of multiple sparse representation and statistical property for SAR target configuration recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1106–1109. doi: 10.1109/LGRS.2013.2287295
    [23]
    Liu Hai-cang and Li Shu-tao. Decision fusion of sparse representation and support vector machine for SAR image target recognition[J]. Neurocomputing, 2013, 113: 97–104. doi: 10.1016/j.neucom.2013.01.033
    [24]
    Zhang Xin-zheng, Liu Zhou-ying, Liu Shu-jun, et al.. Sparse coding of 2D-slice Zernike moments for SAR ATR[J]. International Journal of Remote Sensing, 2017, 38(2): 412–431. doi: 10.1080/01431161.2016.1266107
    [25]
    Xu Yong and Lu Yuwu. Adaptive weighted fusion: A novel fusion approach for image classification[J]. Neurocomputing, 2015, 168: 566–574. doi: 10.1016/j.neucom.2015.05.070
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4323) PDF downloads(898) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint