Loading [MathJax]/jax/output/SVG/jax.js
Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in English)[J]. Journal of Radars, 2016, 5(6): 559-595. doi: 10.12000/JR16074
Citation: Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078

SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion

DOI: 10.12000/JR17078
Funds:  The National Natural Science Foundation of China (61301224)
  • Received Date: 2017-08-18
  • Rev Recd Date: 2017-10-22
  • Available Online: 2017-10-27
  • Publish Date: 2017-10-28
  • In this paper, we present a Synthetic Aperture Radar (SAR) image target recognition algorithm based on multi-feature multiple representation learning classifier fusion. First, it extracts three features from the SAR images, namely principal component analysis, wavelet transform, and Two-Dimensional Slice Zernike Moments (2DSZM) features. Second, we harness the sparse representation classifier and the cooperative representation classifier with the above-mentioned features to get six predictive labels. Finally, we adopt classifier fusion to obtain the final recognition decision. We researched three different classifier fusion algorithms in our experiments, and the results demonstrate thatusing Bayesian decision fusion gives thebest recognition performance. The method based on multi-feature multiple representation learning classifier fusion integrates the discrimination of multi-features and combines the sparse and cooperative representation classification performance to gain complementary advantages and to improve recognition accuracy. The experiments are based on the Moving and Stationary Target Acquisition and Recognition (MSTAR) database,and they demonstrate the effectiveness of the proposed approach.

     

  • [1]
    Qi Zhi-xin, Yeh A G O, Li Xia, et al.. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data[J]. Remote Sensing of Environment, 2012, 118: 21–39. doi: 10.1016/j.rse.2011.11.001
    [2]
    Liu Bin, Hu Hao, Wang Huan-yu, et al.. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 907–924. doi: 10.1109/TGRS.2012.2203358
    [3]
    Wang Hui, Chen Zhan-sheng, and Zheng Shi-chao. Preliminary research of Low-RCS moving target detection based on Ka-Band video SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 811–815. doi: 10.1109/LGRS.2017.2679755
    [4]
    El-DarymliK, Gill E W, and Mcguire P. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review[J]. IEEE Access, 2016, 4: 6014–6058. doi: 10.1109/ACCESS.2016.2611492
    [5]
    Novak L M, Owirka G J, and Netishen C M. Performance of a high-resolution polarimetric SAR automatic target recognition system[J]. The Lincoln Laboratory Journal, 1993, 6(1): 11–23.
    [6]
    Saghri J A and DeKelaita A. Exploitation of target shadows in synthetic aperture radar imagery for automatic target recognition[C]. Proceedings of SPIE Volume 6312 Applications of Digital Image Processing XXIX, California, United States, 2006, 6312: 631212. DOI: 10.1117/12.684401.
    [7]
    Amoon M and Rezai-Rad G A. Automatic target recognition of synthetic aperture radar (SAR) images based on optimal selection of Zernike moments features[J]. IET Computer Vision, 2014, 8(2): 77–85. doi: 10.1049/iet-cvi.2013.0027
    [8]
    Gerry M J, Potter L C, Gupta I J, et al.. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi: 10.1109/8.785750
    [9]
    宦若虹, 张平, 潘赟. PCA、ICA和Gabor小波决策融合的SAR目标识别[J]. 遥感学报, 2012, 16(2): 262–274. doi: 10.11834/jrs.20120457

    Huan Ruo-hong, Zhang Ping, and Pan Yun. SAR target recognition using PCA, ICA and Gabor wavelet decision fusion[J]. Journal of Remote Sensing, 2012, 16(2): 262–274. doi: 10.11834/jrs.20120457
    [10]
    Lin Chang, Peng Fei, Wang Bing-hui, et al.. Research on PCA and KPCA self-fusion based MSTAR SAR automatic target recognition algorithm[J]. Journal of Electronic Science and Technology, 2012, 10(4): 352–357.
    [11]
    Zhang Zheng, Xu Yong, Yang Jian, et al.. A survey of sparse representation: Algorithms and applications[J]. IEEE Access, 2017, 3: 490–530. doi: 10.1109/ACCESS.2015.2430359
    [12]
    Zhang Hai-chao, Nasrabadi N, Zhang Yan-ning, et al.. Multi-view automatic target recognition using joint sparse representation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2481–2497. doi: 10.1109/TAES.2012.6237604
    [13]
    Dong Gang-gang, Kuang Gang-yao, Wang Na, et al.. SAR target recognition via Joint sparse representation of monogenicsignal[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3316–3328. doi: 10.1109/JSTARS.2015.2436694
    [14]
    Dong Gang-gang and Kuang Gang-yao. SAR target recognition via sparse representation of Monogenic signal on Grassmann manifolds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1308–1319. doi: 10.1109/JSTARS.2015.2513481
    [15]
    Sun Yong-gang, Du Lan, Wang Yan, et al.. SAR automatic target recognition based on dictionary learning and joint dynamic sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1777–1781. doi: 10.1109/LGRS.2016.2608578
    [16]
    Song Sheng-li, Xu Bin, and Yang Jian. SAR target recognition via supervised discriminative dictionary learning and sparse representation of the SAR-HOG feature[J]. Remote Sensing, 2016, 8(8): 683. doi: 10.3390/rs8080683
    [17]
    Liu Hong-wei, Bo Jiu, Li Fei, et al.. Attributed scattering center extraction algorithm based on sparse representation with dictionary refinement[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2604–2614. doi: 10.1109/TAP.2017.2673764
    [18]
    Zhang Lei, Yang Meng, and Feng Xiang-chu. Sparse representation or collaborative representation: Which helps face recognition?[C]. Proceedings of IEEE International Conference on Computer Vision, Barcelona, Spain, 2012: 471–478.
    [19]
    Li Wei, Du Qian, Zhang Fan, et al.. Hyperspectral image classification by fusing collaborative and sparse representations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9): 4178–4187. doi: 10.1109/JSTARS.2016.2542113
    [20]
    Chi Yue-jie and Porikli F. Classification and Boosting with multiple collaborative representations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1519–1531. doi: 10.1109/TPAMI.2013.236
    [21]
    Haghighi M S, Vahedian A, and Yazdi H S. Extended decision template presentation for combining classifiers[J]. Expert Systems with Applications, 2011, 38(7): 8414–8418. doi: 10.1016/j.eswa.2011.01.036
    [22]
    Liu Ming, Wu Yan, Zhao Wei, et al.. Dempster-Shafer fusion of multiple sparse representation and statistical property for SAR target configuration recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1106–1109. doi: 10.1109/LGRS.2013.2287295
    [23]
    Liu Hai-cang and Li Shu-tao. Decision fusion of sparse representation and support vector machine for SAR image target recognition[J]. Neurocomputing, 2013, 113: 97–104. doi: 10.1016/j.neucom.2013.01.033
    [24]
    Zhang Xin-zheng, Liu Zhou-ying, Liu Shu-jun, et al.. Sparse coding of 2D-slice Zernike moments for SAR ATR[J]. International Journal of Remote Sensing, 2017, 38(2): 412–431. doi: 10.1080/01431161.2016.1266107
    [25]
    Xu Yong and Lu Yuwu. Adaptive weighted fusion: A novel fusion approach for image classification[J]. Neurocomputing, 2015, 168: 566–574. doi: 10.1016/j.neucom.2015.05.070
  • Relative Articles

    [1]LI Meilin, HAN Chong. Terahertz Communication and Sensing Framework Based on Orthogonal Delay-Doppler Division Multiplexing Modulation[J]. Journal of Radars. doi: 10.12000/JR24238
    [2]ZHANG Peng, YAN Junkun, GAO Chang, LI Kang, LIU Hongwei. Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments[J]. Journal of Radars, 2025, 14(2): 456-469. doi: 10.12000/JR24230
    [3]LIU Fan, LU Shihang, CHEN Zihao. MIMO-ISAC Precoding Design Toward Random Signals[J]. Journal of Radars. doi: 10.12000/JR25019
    [4]TANG Aimin, WANG Shuhan, QU Wenze. Reference Signal Design in OFDM ISAC for Long-range and High-speed UAV Detection[J]. Journal of Radars. doi: 10.12000/JR24240
    [5]HE Yaping, SHI Longfei, WANG Dong, TANG Jianglan, CHEN Junxian, MA Jiazhi, LIU Jialei. Research Progress on Dual Function Radar and Communication Signal Design and its Application in Typical Detection Scenarios[J]. Journal of Radars. doi: 10.12000/JR24213
    [6]HE Zhuoyuan, CHEN Shengyao, ZHU Han, XI Feng, LI Hongtao, LIU Zhong. Transmit Waveform Design for Symbol-Level Precoding-based One-Bit Dual-Functional Radar-Communication[J]. Journal of Radars. doi: 10.12000/JR24217
    [7]CHEN Zirui, JI Yifei, LIU Xiwang, ZHANG Yongsheng, DONG Zhen, CHEN Alei, LIU Weijian. Transient Interference Suppression Algorithm Based on Time Frequency Sparse Prior for Skywave OTHR[J]. Journal of Radars, 2024, 13(6): 1157-1169. doi: 10.12000/JR24188
    [8]LIU Yan, WAN Xianrong, YI Jianxin. OFDM Waveform Design for Joint Radar-communication Based on Data Distortion[J]. Journal of Radars, 2024, 13(1): 160-173. doi: 10.12000/JR23205
    [9]LIU Liu, LIANG Xingdong, LI Yanlei, ZENG Zhiyuan, TANG Haibo. A Novel Joint Radar-communication Waveform Design Method Based on Distributed Aperture[J]. Journal of Radars, 2023, 12(2): 297-311. doi: 10.12000/JR23019
    [10]LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064
    [11]WANG Jiahuan, FAN Pingzhi, SHI Qiao, ZHOU Zhengchun. Doppler Resilient Integrated Sensing and Communication Waveforms Design[J]. Journal of Radars, 2023, 12(2): 275-286. doi: 10.12000/JR22155
    [12]YU Xianxiang, YAO Xue, YANG Jing, LU Jun, CUI Guolong, KONG Lingjiang. Radar-centric DFRC Signal Design: Overview and Future Research Avenues[J]. Journal of Radars, 2023, 12(2): 247-261. doi: 10.12000/JR23015
    [13]WU Wenjun, TANG Bo, TANG Jun, HU Yuankui. Waveform Design for Dual-function Radar-communication Systems in Clutter[J]. Journal of Radars, 2022, 11(4): 570-580. doi: 10.12000/JR22105
    [14]MA Dingyou, LIU Xiang, HUANG Tianyao, LIU Yimin. Joint Radar and Communications: Shared Waveform Designs and Performance Bounds[J]. Journal of Radars, 2022, 11(2): 198-212. doi: 10.12000/JR21146
    [15]LAN Lan, LIAO Guisheng, XU Jingwei, ZHU Shengqi, ZENG Cao, ZHANG Yuhong. Waveform Design and Signal Processing Method of a Multifunctional Integrated System Based on a Frequency Diverse Array(in English)[J]. Journal of Radars, 2022, 11(5): 850-870. doi: 10.12000/JR22163
    [16]WAN Huan, YU Xianxiang, QUAN Zhi, LIAO Bin. Constant Modulus Waveform Design for Low-resolution Quantization MIMO Radar Based on an Alternating Direction Penalty Method[J]. Journal of Radars, 2022, 11(4): 557-569. doi: 10.12000/JR22072
    [17]LIU Fan, YUAN Weijie, YUAN Jinhong, ZHANG J. Andrew, FEI Zesong, ZHOU Jianming. Radar-communication Spectrum Sharing and Integration: Overview and Prospect[J]. Journal of Radars, 2021, 10(3): 467-484. doi: 10.12000/JR20113
    [18]ZHAO Yuzhen, CHEN Longyong, ZHANG Fubo, LI Yanlei, WU Yirong. A New Method of Joint Radar and Communication Waveform Design and Signal Processing Based on OFDM-chirp[J]. Journal of Radars, 2021, 10(3): 453-466. doi: 10.12000/JR21028
    [19]DENG Likang, ZHANG Shuanghui, ZHANG Chi, LIU Yongxiang. A Multiple-Input Multiple-Output Inverse Synthetic Aperture Radar Imaging Method Based on Multidimensional Alternating Direction Method of Multipliers[J]. Journal of Radars, 2021, 10(3): 416-431. doi: 10.12000/JR20132
    [20]Li Lei, Li Guo-lin, Liu Run-jie. Novel Direction Of Arrival Estimation Method Based on Coherent Accumulation Matrix Reconstruction[J]. Journal of Radars, 2015, 4(2): 178-184. doi: 10.12000/JR14116
  • Cited by

    Periodical cited type(30)

    1. 连静,杨勇,谢晓霞,王雪松. 大掠射角对海雷达导引头实测回波特性分析. 系统工程与电子技术. 2024(05): 1535-1543 .
    2. 韩喆璇,于恒力,王中训,刘宁波,孙艳丽. 基于相对多普勒峰高特征的OS-CFAR改进方法. 海军航空大学学报. 2024(04): 475-484 .
    3. 关键,姜星宇,刘宁波,丁昊,黄勇. 海杂波背景下的双极化最大特征值目标检测. 系统工程与电子技术. 2024(11): 3715-3725 .
    4. 张梦雨,王中训,李飞,刘宁波,董云龙. CNN海况等级分类方法的性能. 烟台大学学报(自然科学与工程版). 2023(02): 196-203 .
    5. 关键,刘宁波,王国庆,丁昊,董云龙,黄勇,田凯祥,张梦雨. 雷达对海探测试验与目标特性数据获取——海上目标双极化多海况散射特性数据集. 雷达学报. 2023(02): 456-469 . 本站查看
    6. 许述文,焦银萍,白晓惠,蒋俊正. 基于频域多通道图特征感知的海面小目标检测. 电子与信息学报. 2023(05): 1567-1574 .
    7. 赵迪,行鸿彦,王海峰,阎妍. 基于SAE-GA-XGBoost算法的海面小目标检测. 雷达科学与技术. 2023(01): 88-96 .
    8. 关键,姜星宇,刘宁波,黄勇,丁昊. 海杂波中目标分数域谱范数特征检测方法. 电子与信息学报. 2023(06): 2162-2170 .
    9. 刘照标,张友益,陈翰. 舰载近程搜索雷达时空二维海杂波建模与仿真. 舰船电子对抗. 2023(03): 70-74 .
    10. 丁昊,朱晨光,刘宁波,王国庆. 高海况条件下海面漂浮小目标特征提取与分析. 海军航空大学学报. 2023(04): 301-312 .
    11. 李宏武,王燊燊,徐秦,祁华峰. 海杂波对机载雷达探测影响研究. 现代电子技术. 2023(20): 101-106 .
    12. 杜延磊,杨晓峰,汪胜,殷君君,杨会章,杨健. 海面雷达散射及其杂波幅度统计特性的空间遍历性数值仿真研究. 系统工程与电子技术. 2023(12): 3806-3818 .
    13. 关键,伍僖杰,丁昊,刘宁波,董云龙,张鹏飞. 基于对角积分双谱的海面慢速小目标检测方法. 电子与信息学报. 2022(07): 2449-2460 .
    14. 董云龙,刘洋,刘宁波,丁昊,关键. 基于雷达方程修正的目标探测距离评估方法. 信号处理. 2022(10): 2102-2113 .
    15. 刘宁波,丁昊,黄勇,董云龙,王国庆,董凯. X波段雷达对海探测试验与数据获取年度进展. 雷达学报. 2021(01): 173-182 . 本站查看
    16. 丁斌,夏雪,梁雪峰. 基于深度生成对抗网络的海杂波数据增强方法. 电子与信息学报. 2021(07): 1985-1991 .
    17. 时艳玲,刘子鹏,贾邦玲. 样本不平衡下的海杂波弱目标分类研究. 信号处理. 2021(09): 1781-1789 .
    18. 伍僖杰,丁昊,刘宁波,关键. 基于时频脊-Radon变换的海面小目标检测方法. 信号处理. 2021(09): 1599-1611 .
    19. 刘宁波,姜星宇,丁昊,关键. 雷达大擦地角海杂波特性与目标检测研究综述. 电子与信息学报. 2021(10): 2771-2780 .
    20. 杜延磊,高帆,刘涛,杨健. 基于数值仿真的X波段极化SAR海杂波统计建模与特性分析. 系统工程与电子技术. 2021(10): 2742-2755 .
    21. 时艳玲,姚婷婷,郭亚星. 基于图连通密度的海面漂浮小目标检测. 电子与信息学报. 2021(11): 3185-3192 .
    22. 刘用功,尹勇. 目标船感知技术综述. 广州航海学院学报. 2021(04): 1-4+30 .
    23. 陈世超,高鹤婷,罗丰. 基于极化联合特征的海面目标检测方法. 雷达学报. 2020(04): 664-673 . 本站查看
    24. 关键. 雷达海上目标特性综述. 雷达学报. 2020(04): 674-683 . 本站查看
    25. 唐先慧,李东,粟嘉,程婉儒,任金芝,李秀琴. 基于AlexNet的自适应杂波智能抑制方法. 信号处理. 2020(12): 2032-2042 .
    26. 王超,孙芹东,张林,王文龙,张小川. 水下声学滑翔机海上目标探测试验与性能评估. 信号处理. 2020(12): 2043-2051 .
    27. 曹成会,张杰,张晰,孟俊敏,毛兴鹏. 低掠射微波雷达的海杂波多方位幅度特性分析. 信号处理. 2020(12): 2085-2098 .
    28. 刘宁波,董云龙,王国庆,丁昊,黄勇,关键,陈小龙,何友. X波段雷达对海探测试验与数据获取. 雷达学报. 2019(05): 656-667 . 本站查看
    29. 于涵,水鹏朗,施赛楠,杨春娇. 广义Pareto分布海杂波模型参数的组合双分位点估计方法. 电子与信息学报. 2019(12): 2836-2843 .
    30. 王国庆,王朝铺,刘传辉,刘宁波,丁昊. 利用神经网络的海杂波幅度分布参数估计方法. 海军航空工程学院学报. 2019(06): 480-487 .

    Other cited types(23)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.1 %FULLTEXT: 28.1 %META: 61.4 %META: 61.4 %PDF: 10.5 %PDF: 10.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.9 %其他: 4.9 %其他: 2.7 %其他: 2.7 %Central District: 0.0 %Central District: 0.0 %China: 0.2 %China: 0.2 %Falls Church: 0.1 %Falls Church: 0.1 %Fremont: 0.0 %Fremont: 0.0 %Herndon: 0.1 %Herndon: 0.1 %Rochester: 0.1 %Rochester: 0.1 %Russian Federation: 0.0 %Russian Federation: 0.0 %Seattle: 0.1 %Seattle: 0.1 %United States: 0.0 %United States: 0.0 %[]: 0.2 %[]: 0.2 %三亚: 0.1 %三亚: 0.1 %上海: 6.1 %上海: 6.1 %东京: 0.0 %东京: 0.0 %东京都: 0.0 %东京都: 0.0 %东莞: 0.6 %东莞: 0.6 %中卫: 0.0 %中卫: 0.0 %丹东: 0.0 %丹东: 0.0 %乌海: 0.0 %乌海: 0.0 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %京畿道: 0.0 %京畿道: 0.0 %伦敦: 0.0 %伦敦: 0.0 %佛山: 0.0 %佛山: 0.0 %佳木斯: 0.0 %佳木斯: 0.0 %保定: 0.1 %保定: 0.1 %儋州: 0.0 %儋州: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.0 %兰辛: 0.0 %内江: 0.1 %内江: 0.1 %凤凰城: 0.1 %凤凰城: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 13.7 %北京: 13.7 %北方邦: 0.0 %北方邦: 0.0 %十堰: 0.0 %十堰: 0.0 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 3.7 %南京: 3.7 %南充: 0.0 %南充: 0.0 %南宁: 0.0 %南宁: 0.0 %南昌: 0.2 %南昌: 0.2 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.2 %厦门: 0.2 %台北: 0.2 %台北: 0.2 %台州: 0.1 %台州: 0.1 %合肥: 0.7 %合肥: 0.7 %呼和浩特: 0.0 %呼和浩特: 0.0 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %四平: 0.0 %四平: 0.0 %圣何塞: 0.0 %圣何塞: 0.0 %大连: 0.1 %大连: 0.1 %大阪: 0.0 %大阪: 0.0 %天水围: 0.0 %天水围: 0.0 %天津: 0.5 %天津: 0.5 %太原: 0.2 %太原: 0.2 %威海: 0.4 %威海: 0.4 %娄底: 0.2 %娄底: 0.2 %宁波: 0.0 %宁波: 0.0 %安康: 0.3 %安康: 0.3 %宜昌: 0.0 %宜昌: 0.0 %宝鸡: 0.2 %宝鸡: 0.2 %宣城: 0.4 %宣城: 0.4 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %常州: 0.1 %常州: 0.1 %常德: 0.3 %常德: 0.3 %平顶山: 0.0 %平顶山: 0.0 %广安: 0.0 %广安: 0.0 %广州: 1.7 %广州: 1.7 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.1 %延安: 0.1 %延边: 0.1 %延边: 0.1 %开封: 0.0 %开封: 0.0 %张家口: 1.1 %张家口: 1.1 %张家界: 0.0 %张家界: 0.0 %徐州: 0.1 %徐州: 0.1 %德里: 0.1 %德里: 0.1 %恩施: 0.0 %恩施: 0.0 %悉尼: 0.0 %悉尼: 0.0 %惠州: 0.1 %惠州: 0.1 %成都: 2.2 %成都: 2.2 %扬州: 0.3 %扬州: 0.3 %抚顺: 0.0 %抚顺: 0.0 %无锡: 0.7 %无锡: 0.7 %昆明: 2.2 %昆明: 2.2 %晋城: 0.0 %晋城: 0.0 %曼谷: 0.0 %曼谷: 0.0 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.7 %杭州: 1.7 %株洲: 0.0 %株洲: 0.0 %桂林: 0.0 %桂林: 0.0 %梅州: 0.0 %梅州: 0.0 %榆林: 0.0 %榆林: 0.0 %武汉: 1.4 %武汉: 1.4 %氹仔: 0.0 %氹仔: 0.0 %沈阳: 0.3 %沈阳: 0.3 %河内: 0.0 %河内: 0.0 %泰安: 0.1 %泰安: 0.1 %泰州: 0.1 %泰州: 0.1 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.4 %济南: 0.4 %海口: 0.3 %海口: 0.3 %淄博: 0.1 %淄博: 0.1 %淮南: 0.0 %淮南: 0.0 %淮安: 0.0 %淮安: 0.0 %深圳: 1.2 %深圳: 1.2 %温州: 0.2 %温州: 0.2 %渭南: 0.2 %渭南: 0.2 %湘西: 0.1 %湘西: 0.1 %漯河: 0.6 %漯河: 0.6 %潍坊: 0.2 %潍坊: 0.2 %烟台: 0.7 %烟台: 0.7 %珠海: 0.1 %珠海: 0.1 %益阳: 0.1 %益阳: 0.1 %石嘴山: 0.1 %石嘴山: 0.1 %石家庄: 0.5 %石家庄: 0.5 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.2 %秦皇岛: 0.2 %纳什维尔: 0.1 %纳什维尔: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.2 %绵阳: 0.2 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 17.7 %芒廷维尤: 17.7 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.5 %苏州: 0.5 %茂名: 0.0 %茂名: 0.0 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %葵涌: 0.0 %葵涌: 0.0 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %西宁: 8.7 %西宁: 8.7 %西安: 6.1 %西安: 6.1 %西雅图: 0.0 %西雅图: 0.0 %诺伊达: 0.0 %诺伊达: 0.0 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.1 %贵阳: 0.1 %迈阿密: 0.0 %迈阿密: 0.0 %运城: 0.5 %运城: 0.5 %连云港: 0.1 %连云港: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.6 %郑州: 0.6 %鄂州: 0.3 %鄂州: 0.3 %酒泉: 0.2 %酒泉: 0.2 %重庆: 0.7 %重庆: 0.7 %金奈: 0.1 %金奈: 0.1 %铁岭: 0.2 %铁岭: 0.2 %银川: 0.0 %银川: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 3.7 %长沙: 3.7 %长治: 0.2 %长治: 0.2 %阿什本: 0.0 %阿什本: 0.0 %阿菲永卡拉希萨尔: 0.1 %阿菲永卡拉希萨尔: 0.1 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.0 %鞍山: 0.0 %首尔: 0.1 %首尔: 0.1 %首尔特别: 0.1 %首尔特别: 0.1 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %马鞍山: 0.0 %马鞍山: 0.0 %黄冈: 0.0 %黄冈: 0.0 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Central DistrictChinaFalls ChurchFremontHerndonRochesterRussian FederationSeattleUnited States[]三亚上海东京东京都东莞中卫丹东乌海乌鲁木齐京畿道伦敦佛山佳木斯保定儋州六安兰州兰辛内江凤凰城加利福尼亚州北京北方邦十堰华盛顿州南京南充南宁南昌卡拉奇厦门台北台州合肥呼和浩特咸阳哈尔滨哥伦布嘉兴四平圣何塞大连大阪天水围天津太原威海娄底宁波安康宜昌宝鸡宣城巴音郭楞常州常德平顶山广安广州库比蒂诺延安延边开封张家口张家界徐州德里恩施悉尼惠州成都扬州抚顺无锡昆明晋城曼谷朝阳杭州株洲桂林梅州榆林武汉氹仔沈阳河内泰安泰州泰米尔纳德洛杉矶洛阳济南海口淄博淮南淮安深圳温州渭南湘西漯河潍坊烟台珠海益阳石嘴山石家庄福州秦皇岛纳什维尔纽约绍兴绵阳舟山芒廷维尤芝加哥苏州茂名莫斯科葫芦岛葵涌衡水衡阳衢州西宁西安西雅图诺伊达诺沃克贵阳迈阿密运城连云港邯郸郑州鄂州酒泉重庆金奈铁岭银川镇江长春长沙长治阿什本阿菲永卡拉希萨尔青岛鞍山首尔首尔特别香港特别行政区马鞍山黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4566) PDF downloads(909) Cited by(53)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint