Volume 9 Issue 5
Oct.  2020
Turn off MathJax
Article Contents
DAI Muchen, LENG Xiangguang, XIONG Boli, et al. Sea-land segmentation method for SAR images based on improved BiSeNet[J]. Journal of Radars, 2020, 9(5): 886–897. doi: 10.12000/JR20089
Citation: DAI Muchen, LENG Xiangguang, XIONG Boli, et al. Sea-land segmentation method for SAR images based on improved BiSeNet[J]. Journal of Radars, 2020, 9(5): 886–897. doi: 10.12000/JR20089

Sea-land Segmentation Method for SAR Images Based on Improved BiSeNet

doi: 10.12000/JR20089
Funds:  The National Natural Science Foundation of China (61701508, 61971426)
More Information
  • Corresponding author: LENG Xiangguang, luckight@163.com; JI Kefeng, jikefeng@nudt.edu.cn
  • Received Date: 2020-07-02
  • Rev Recd Date: 2020-08-13
  • Available Online: 2020-09-02
  • Publish Date: 2020-10-28
  • Sea–land segmentation is a basic step in coastline extraction and nearshore target detection. Because of poor segmentation accuracy and complicated parameter adjustment, the traditional sea–land segmentation algorithm is difficult to adapt in practical applications. Convolutional neural networks, which can extract multiple hierarchical features of images, can be used as an alternative technical approach for sea–land segmentation tasks. Among them, BiSeNet exhibits good performance in the semantic segmentation of natural scene images and effectively balances segmentation accuracy and speed. However, for the sea–land segmentation of SAR images, BiSeNet cannot extract the contextual semantic and spatial information of SAR images; thus, the segmentation effect is poor. To address the aforementioned problem, this study reduced the number of convolution layers in the spatial path to reduce the loss of spatial information and selected the ResNet18 lightweight model as the backbone network for the context path to reduce the overfitting phenomenon and provide a broad receptive field. At the same time, strategies for edge enhancement and loss function are proposed to improve the segmentation performance of the network in the land and sea boundary region. Experimental results based on GF3 data showed that the proposed method effectively improves the prediction accuracy and segmentation rate of the network. The segmentation accuracy and F1 score of the proposed method are 0.9889 and 0.9915, respectively, and the processing rate of SAR image slices with the resolution of 1024 × 1024 is 12.7 frames/s, which are better than those of other state-of-the-art approaches. Moreover, the size of the network is more than half of that of BiSeNet and smaller than that of U-Net. Thus, the network exhibits strong generalization performance.

     

  • loading
  • [1]
    邢相薇, 计科峰, 康利鸿, 等. HRWS SAR图像舰船目标监视技术研究综述[J]. 雷达学报, 2015, 4(1): 107–121. doi: 10.12000/JR14144

    XING Xiangwei, JI Kefeng, KANG Lihong, et al. Review of ship surveillance technologies based on high-resolution wide-swath synthetic aperture radar imaging[J]. Journal of Radars, 2015, 4(1): 107–121. doi: 10.12000/JR14144
    [2]
    周明, 马亮, 王宁, 等. 面向海面目标检测的陆海分离和海面分区算法研究[J]. 雷达学报, 2019, 8(3): 366–372. doi: 10.12000/JR19036

    ZHOU Ming, MA Liang, WANG Ning, et al. Land-sea separation and sea surface zoning algorithms for sea surface target[J]. Journal of Radars, 2019, 8(3): 366–372. doi: 10.12000/JR19036
    [3]
    李智, 曲长文, 周强, 等. 基于SLIC超像素分割的SAR图像海陆分割算法[J]. 雷达科学与技术, 2017, 15(4): 354–358. doi: 10.3969/j.issn.1672-2337.2017.04.003

    LI Zhi, QU Changwen, ZHOU Qiang, et al. A sea-land segmentation algorithm of SAR image based on the SLIC superpixel division[J]. Radar Science and Technology, 2017, 15(4): 354–358. doi: 10.3969/j.issn.1672-2337.2017.04.003
    [4]
    安成锦, 牛照东, 李志军, 等. 典型Otsu算法阈值比较及其SAR图像水域分割性能分析[J]. 电子与信息学报, 2010, 32(9): 2215–2219. doi: 10.3724/SP.J.1146.2009.01426

    AN Chengjin, NIU Zhaodong, LI Zhijun, et al. Otsu threshold comparison and SAR water segmentation result analysis[J]. Journal of Electronics &Information Technology, 2010, 32(9): 2215–2219. doi: 10.3724/SP.J.1146.2009.01426
    [5]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076
    [6]
    LIU Chun, YANG Jian, YIN Junjun, et al. Coastline detection in SAR images using a hierarchical level set segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(11): 4908–4920. doi: 10.1109/jstars.2016.2613279
    [7]
    侯彪, 胡育辉, 焦李成. SAR图像水域的改进Shearlet边缘检测[J]. 中国图象图形学报, 2010, 15(10): 1549–1554. doi: 10.11834/jig.20101019

    HOU Biao, HU Yuhui, and JIAO Licheng. Improved shearlet edge detection for waters of SAR images[J]. Journal of Image and Graphics, 2010, 15(10): 1549–1554. doi: 10.11834/jig.20101019
    [8]
    LIU Zhongling, LI Fei, LI Ning, et al. A novel region-merging approach for coastline extraction from sentinel-1A IW mode SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 324–328. doi: 10.1109/LGRS.2015.2510745
    [9]
    黄祥李, 张杰, 计科峰, 等. 基于GSHHG数据库与改进CV模型的SAR图像海陆分割算法[C]. 第五届高分辨率对地观测学术年会论文集, 西安, 中国, 2018, 877–892.

    HUANG Xiangli, ZHANG Jie, JI Kefeng, et al. Sea-land segmentation algorithm of SAR image based on GSHHG database and improved CV model[C]. The 5th China High Resolution Earth Observation Conference, Xi’an, China, 2018, 877–892.
    [10]
    SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    [11]
    RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
    [12]
    BADRINARAYANAN V, KENDALL A, and CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615
    [13]
    CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
    [14]
    ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6230–6239. doi: 10.1109/CVPR.2017.660.
    [15]
    李宁, 牛世林. 基于局部超分辨重建的高精度SAR图像水域分割方法[J]. 雷达学报, 2020, 9(1): 174–184. doi: 10.12000/JR19096

    LI Ning and NIU Shilin. High-precision water segmentation from synthetic aperture radar images based on local super-resolution restoration technology[J]. Journal of Radars, 2020, 9(1): 174–184. doi: 10.12000/JR19096
    [16]
    SHAMSOLMOALI P, ZAREAPOOR M, WANG Ruili, et al. A novel deep structure U-Net for sea-land segmentation in remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3219–3232. doi: 10.1109/JSTARS.2019.2925841
    [17]
    LI Ruirui, LIU Wenjie, YANG Lei, et al. DeepUNet: A deep fully convolutional network for pixel-level sea-land segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 3954–3962. doi: 10.1109/JSTARS.2018.2833382
    [18]
    张金松, 邢孟道, 孙光才. 一种基于密集深度分离卷积的SAR图像水域分割算法[J]. 雷达学报, 2019, 8(3): 400–412. doi: 10.12000/JR19008

    ZHANG Jinsong, XING Mengdao, and SUN Guangcai. A water segmentation algorithm for SAR image based on dense depthwise separable convolution[J]. Journal of Radars, 2019, 8(3): 400–412. doi: 10.12000/JR19008
    [19]
    YU Changqian, WANG Jingbo, PENG Chao, et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 334–349. doi: 10.1007/978-3-030-01261-8_20.
    [20]
    张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049

    ZHANG Qingjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049
    [21]
    LI Hanchao, XIONG Pengfei, FAN Haoqiang, et et al. DFANet: Deep feature aggregation for real-time semantic segmentation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9514–9523. doi: 10.1109/CVPR.2019.00975.
    [22]
    张彤彤, 董军宇, 赵浩然, 等. 基于知识蒸馏的轻量型浮游植物检测网络[J]. 应用科学学报, 2020, 38(3): 367–376. doi: 10.3969/j.issn.0255-8297.2020.03.003

    ZHANG Tongtong, DONG Junyu, ZHAO Haoran, et al. Lightweight phytoplankton detection network based on knowledge distillation[J]. Journal of Applied Sciences, 2020, 38(3): 367–376. doi: 10.3969/j.issn.0255-8297.2020.03.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3120) PDF downloads(274) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint