Volume 4 Issue 4
Oct.  2015
Turn off MathJax
Article Contents
Ding Hao, Xue Yong-hua, Huang Yong, Guan Jian. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter[J]. Journal of Radars, 2015, 4(4): 418-430. doi: 10.12000/JR14133
Citation: Ding Hao, Xue Yong-hua, Huang Yong, Guan Jian. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter[J]. Journal of Radars, 2015, 4(4): 418-430. doi: 10.12000/JR14133

Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter

DOI: 10.12000/JR14133
  • Received Date: 2014-11-17
  • Rev Recd Date: 2015-01-04
  • Publish Date: 2015-08-28
  • In the field of adaptive radar detection, an effective strategy to improve the detection performance is to exploit the structural information of the covariance matrix, especially in the case of insufficient reference cells. Thus, in this study, the problem of detecting multidimensional subspace signals is discussed by considering the persymmetric structure of the clutter covariance matrix, which implies that the covariance matrix is persymmetric about its cross diagonal. Persymmetric adaptive detectors are derived on the basis of the one-step principle as well as the two-step Generalized Likelihood Ratio Test (GLRT) in homogeneous and partially homogeneous clutter. The proposed detectors consider the structural information of the covariance matrix at the design stage. Simulation results suggest performance improvement compared with existing detectors when reference cells are insufficient. Moreover, the detection performance is assessed with respect to the effects of the covariance matrix, signal subspace dimension, and mismatched performance of signal subspace as well as signal fluctuations.

     

  • loading
  • [1]
    Gini F and Farina A. Vector subspace detection in compound-Gaussian clutter, part I: surgey and new results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4): 1295-1311.
    [2]
    Kelly E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(2): 115-127.
    [3]
    Robey F C, Fuhrman D L, Kelly E J, et al.. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216.
    [4]
    Kraut S, Scharf L L, and McWhorter L T. Adaptive subspace detectors[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 1-16.
    [5]
    Kraut S and Scharf L L. The CFAR adaptive subspace detector is a scale-invariant GLRT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2538-2541.
    [6]
    Kraut S, Scharf L L, and ButlerR W. The adaptive coherent estimator: a uniformly most-powerful-invariant adaptive detection statistic[J]. IEEE Transactions on Signal
    [7]
    Processing, 2005, 53(2): 427-438. Conte E, Lops M, and Ricci G. Asymptotically optimum radar detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 617-625.
    [8]
    Conte E, Lops M, and Ricci G. Adaptive matched filter detection in spherically invariant noise[J]. IEEE Signal Processing Letters, 1996, 3(8): 248-250.
    [9]
    Gini F. Sub-optimum coherent radar detection in a mixture of K-distributed and Gaussian clutter[J]. IEE Proceedings- Radar, Sonar and Navigation, 1997, 144(1): 39-48.
    [10]
    Reed I S, Mallett J D, and Brennan L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(6): 853-863.
    [11]
    Melvin W L and Showman G A. An approach to knowledge-aided covariance estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1021-1042.
    [12]
    Melvin W L. Space-time adaptive radar performance in heterogeneous clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 621-633.
    [13]
    Richmond C D. Performance of a class of adaptive detection algorithms in nonhomogeneous environments[J]. IEEE Transactions on Signal Processing, 2000, 48(5): 1248-1262.
    [14]
    Maio A D, Nicola S D, Landi L, et al.. Knowledge-aided covariance matrix estimation: a MAXDET approach[J]. IET Radar, Sonar Navigation, 2009, 3(4): 341-356.
    [15]
    Besson O, Tourneret J Y, and Bidon S. Knowledge-aided Bayesian detection in heterogeneous environments[J]. IEEE Signal Processing Letters, 2007, 14(5): 355-358.
    [16]
    Bidon S, Besson O, and Tourneret J Y. A Bayesian approach to adaptive detection in nonhomogeneous environments[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 205-217.
    [17]
    Rabideau D J and Steinhardt A O. Improved adaptive clutter cancellation through data-adaptive training[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 879-891.
    [18]
    Nitzberg R. Application of maximum likelihood estimation of persymmetric covariance matrices to adaptive processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(1): 124-127.
    [19]
    Li H, Stoica P, and Li J. Computationally efficient maximum likelihood estimation of structured covariance matrices[J]. IEEE Transactions on Signal Processing, 1999, 47(5): 1314-1323.
    [20]
    Roman J R, Rangaswamy M, Davis D W, et al.. Parametric adaptive matched filter for airborne radar applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 677-692.
    [21]
    Alfano G, Maio A D, and Farina A. Model-based adaptive detection of range-spread targets[J]. IEE Proceedings- Radar, Sonar and Navigation, 2004, 151(1): 2-10.
    [22]
    Wang P, Li H B, and Himed B. A parametric moving target detector for distributed MIMO radar in non-homogeneous environment[J]. IEEE Transactions on Signal Processing, 2013, 61(9): 2282-2294.
    [23]
    Cai L and Wang H. A persymmetric multiband GLR algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 806-816.
    [24]
    Casillo M, Maio A D, Iommelli S, et al.. A persymmetric GLRT for adaptive detection in partially-homogeneous environment[J]. IEEE Signal Processing Letters, 2007, 14(12): 1016-1019.
    [25]
    Hao C P, Orlando D, Ma X C, et al.. Persymmetric Rao and Wald tests for partially homogeneous environment[J]. IEEE Signal Processing Letters, 2012, 19(9): 587-590.
    [26]
    Pailloux G, Forster P, Ovarlez J P, et al.. Persymmetric adaptive radar detectors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 39(2): 2376-2390.
    [27]
    Gao Y C, Liao G S, Zhu S Q, et al.. A persymmetric GLRT for adaptive detection in compound-Gaussian clutter with random texture[J]. IEEE Signal Processing Letters, 2013, 20(6): 615-618.
    [28]
    Gao Y C, Liao G S, Zhu S Q, et al.. Persymmetric adaptive detectors in homogeneous and partially homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 331-342.
    [29]
    Hao C, Orlando D, Ma X, et al.. Persymmetric detectors with enhanced rejection capabilities[J]. IET Radar, Sonar
    [30]
    Navigation, 2014, 8(5): 557-563. Hao C, Orlando D, Foglia G, et al.. Persymmetric adaptive detection of distributed targets in partially-homogeneous environment[J]. Digital Signal Processing, 2014, 24: 42-51.
    [31]
    Wang P, Sahinoglu Z, Pun M, et al.. Persymmetric parametric adaptive matched filter for multichannel adaptive signal detection[J]. IEEE Transactions on Signal Processing, 2012, 60(6): 3322-3328.
    [32]
    Conte E and Maio A D. Exploiting persymmetry for CFAR detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 719-724.
    [33]
    Conte E and Maio A D. Mitigation techniques for non-Gaussian sea clutter[J]. IEEE Journal of Ocean Engineering, 2004, 29(2): 284-302.
    [34]
    Maio A D, Foglia G, Conte E, et al.. CFAR behavior of adaptive detectors: an experimental analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 233-251.
    [35]
    Javier C M, Javier G M, Alberto A L, et al.. Small-target detection in high-resolution heterogeneous sea-clutter: an empirical analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1880-1898.
    [36]
    Bon N, Khenchaf A, and Garello R. GLRT subspace detection for range and Doppler distributed targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2): 678-696.
    [37]
    Jin Y and Friedlander B. A CFAR adaptive subspace detector for second-order Gaussian signals[J]. IEEE Transactions on Signal Processing, 2005, 53(3): 871-884.
    [38]
    Conte E, Maio A D, and Ricci G. GLRT-based adaptive detection algorithms for range-spread targets[J]. IEEE Transactions on Signal Processing, 2001, 49(7): 1336-1348.
    [39]
    Raghavan R S, Pulsone N, and McLaughlin D J. Performance of the GLRT for adaptive vector subspace detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1473-1487.
    [40]
    Kelly E J and Forsythe K M. Adaptive detection and parameter estimation for multidimensional signal models[R]. Lincoln Lab., Mass. Inst. Technol., Lexington, Tech. Rep. 848, 1989.
    [41]
    Maio A D and Ricci G. A polarimetric adaptive matched filter[J]. Signal Processing, 2001, 81(12): 2583-2589.
    [42]
    Gini F and Greco M. Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter[J]. Signal Processing, 2002, 82: 1847-1859.
    [43]
    Kelly E J. Performance of an adaptive detection algorithm rejection of unwanted signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2): 122-133.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2427) PDF downloads(1211) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint