Citation: | GUO Qian, WANG Haipeng, and XU Feng. Research progress on aircraft detection and recognition in SAR imagery[J]. Journal of Radars, 2020, 9(3): 497–513. doi: 10.12000/JR20020 |
[1] |
MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
|
[2] |
DUDGEON D E and LACOSS R T. An overview of automatic target recognition[J]. The Lincoln Laboratory Journal, 1993, 6(1): 3–10.
|
[3] |
CUI Yi, ZHOU Guangyi, YANG Jian, et al. On the iterative censoring for target detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 641–645. doi: 10.1109/LGRS.2010.2098434
|
[4] |
徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. doi: 10.12000/JR16130
XU Feng, WANG Haipeng, and JIN Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. doi: 10.12000/JR16130
|
[5] |
CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720
|
[6] |
高贵, 周蝶飞, 蒋咏梅, 等. SAR图像目标检测研究综述[J]. 信号处理, 2008, 24(6): 971–981. doi: 10.3969/j.issn.1003-0530.2008.06.018
GAO Gui, ZHOU Diefei, JIANG Yongmei, et al. Study on target detection in SAR image: A survey[J]. Signal Processing, 2008, 24(6): 971–981. doi: 10.3969/j.issn.1003-0530.2008.06.018
|
[7] |
NOVAK L M, OWIRKA G J, BROWER W S, et al. The automatic target-recognition system in SAIP[J]. Lincoln Laboratory Journal, 1997, 10(2): 187–201.
|
[8] |
STEENSON B O. Detection performance of a mean-level threshold[J]. IEEE Transactions on Aerospace and Electronic Systems, 1968, AES-4(4): 529–534. doi: 10.1109/TAES.1968.5409020
|
[9] |
FINN H M and JOHNSON R S. Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates[J]. RCA Review, 1968, 29(3): 414–464.
|
[10] |
HANSEN V G. Constant false alarm rate processing in search radars[C]. 1973 IEEE International Radar Conference, London, UK, 1973: 325–332.
|
[11] |
TRUNK G V. Range resolution of targets using automatic detectors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, AES-14(5): 750–755. doi: 10.1109/TAES.1978.308625
|
[12] |
KUTTIKKAD S and CHELLAPPA R. Non-Gaussian CFAR techniques for target detection in high resolution SAR images[C]. 1st IEEE International Conference on Image Processing, Austin, USA, 1994: 910–914. doi: 10.1109/ICIP.1994.413444.
|
[13] |
SMITH M E and VARSHNEY P K. VI-CFAR: A novel CFAR algorithm based on data variability[C]. 1997 IEEE National Radar Conference, Syracuse, USA, 1997: 263–268. doi: 10.1109/NRC.1997.588317.
|
[14] |
种劲松, 朱敏慧. SAR图像舰船及其尾迹检测研究综述[J]. 电子学报, 2003, 31(9): 1356–1360. doi: 10.3321/j.issn:0372-2112.2003.09.020
CHONG Jinsong and ZHU Minhui. Survey of the study on ship and wake detection in SAR imagery[J]. Acta Electronica Sinica, 2003, 31(9): 1356–1360. doi: 10.3321/j.issn:0372-2112.2003.09.020
|
[15] |
王超, 张波, 温晓阳, 等. 基于雷达散射特性的高分辨率SAR图像自动目标识别[J]. 电波科学学报, 2004, 19(4): 422–426. doi: 10.3969/j.issn.1005-0388.2004.04.008
WANG Chao, ZHANG Bo, WEN Xiaoyang, et al. Automatic target recognition in high resolution SAR image based on backscatter characteristics[J]. Chinese Journal of Radio Science, 2004, 19(4): 422–426. doi: 10.3969/j.issn.1005-0388.2004.04.008
|
[16] |
唐涛. 合成孔径雷达图像局部特征提取与应用研究[D]. [博士论文], 国防科学技术大学, 2016: 36–63.
TANG Tao. Research and application of local feature extraction in synthetic aperture radar imagery[D]. [Ph.D. dissertation], National University of Defense Technology, 2016: 36–63.
|
[17] |
AO Wei, XU Feng, LI Yongchen, et al. Detection and discrimination of ship targets in complex background from spaceborne ALOS-2 SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 536–550. doi: 10.1109/JSTARS.2017.2787573
|
[18] |
GAO Gui, OUYANG Kewei, LUO Yongbo, et al. Scheme of parameter estimation for generalized gamma distribution and its application to ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1812–1832. doi: 10.1109/TGRS.2016.2634862
|
[19] |
LENG Xiangguang, JI Kefeng, XING Xiangwei, et al. Area ratio invariant feature group for ship detection in SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2376–2388. doi: 10.1109/JSTARS.2018.2820078
|
[20] |
LENG Xiangguang, JI Kefeng, ZHOU Shilin, et al. Ship detection based on complex signal kurtosis in single-channel SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6447–6461. doi: 10.1109/TGRS.2019.2906054
|
[21] |
WANG Xiaolong and CHEN Cuixia. Ship detection for complex background SAR images based on a multiscale variance weighted image entropy method[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(2): 184–187. doi: 10.1109/LGRS.2016.2633548
|
[22] |
ZHANG Xinzheng, QIN Jianhong, and LI Guojun. SAR Target classification using Bayesian compressive sensing with scattering centers features[J]. Progress in Electromagnetics Research, 2013, 136: 385–407. doi: 10.2528/PIER12120705
|
[23] |
DONG Ganggang, WANG Na, and KUANG Gangyao. Sparse representation of monogenic signal: With application to target recognition in SAR images[J]. IEEE Signal Processing Letters, 2014, 21(8): 952–956. doi: 10.1109/LSP.2014.2321565
|
[24] |
宦若虹, 杨汝良. 基于小波域NMF特征提取的SAR图像目标识别方法[J]. 电子与信息学报, 2009, 31(3): 588–591.
HUAN Ruohong and YANG Ruliang. Synthetic aperture radar images target recognition based on wavelet domain NMF feature extraction[J]. Journal of Electronics &Information Technology, 2009, 31(3): 588–591.
|
[25] |
龙泓琳, 皮亦鸣, 曹宗杰. 基于非负矩阵分解的SAR图像目标识别[J]. 电子学报, 2010, 38(6): 1425–1429.
LONG Honglin, PI Yimin, and CAO Zongjie. Non-negative matrix factorization for target recognition[J]. Acta Electronica Sinica, 2010, 38(6): 1425–1429.
|
[26] |
张新征, 谭志颖, 王亦坚. 基于多特征-多表示融合的SAR图像目标识别[J]. 雷达学报, 2017, 6(5): 492–502. doi: 10.12000/JR17078
ZHANG Xinzheng, TAN Zhiying, and WANG Yijian. SAR target recognition based on multi-feature multiple representation classifier fusion[J]. Journal of Radars, 2017, 6(5): 492–502. doi: 10.12000/JR17078
|
[27] |
程建, 黎兰, 王海旭. 稀疏表示框架下的SAR目标识别[J]. 电子科技大学学报, 2014, 43(4): 524–529. doi: 10.3969/j.issn.1001-0548.2014.04.009
CHENG Jian, LI Lan, and WANG Haixu. SAR target recognition under the framework of sparse representation[J]. Journal of University of Electronic Science and Technology of China, 2014, 43(4): 524–529. doi: 10.3969/j.issn.1001-0548.2014.04.009
|
[28] |
张锐, 洪峻, 明峰. 基于目标CSAR回波模型的SAR自动目标识别算法[J]. 电子与信息学报, 2011, 33(1): 27–32. doi: 10.3724/SP.J.1146.2010.00192
ZHANG Rui, HONG Jun, and MING Feng. SAR ATR algorithm based on CSAR raw echo modeling[J]. Journal of Electronics &Information Technology, 2011, 33(1): 27–32. doi: 10.3724/SP.J.1146.2010.00192
|
[29] |
HE Chu, LI Shuang, LIAO Zixian, et al. Texture classification of PolSAR data based on sparse coding of wavelet polarization textons[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4576–4590. doi: 10.1109/TGRS.2012.2236338
|
[30] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
|
[31] |
郑远攀, 李广阳, 李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程应用, 2019, 55(12): 20–36. doi: 10.3778/j.issn.1002-8331.1903-0031
ZHENG Yuanpan, LI Guangyang, and LI Ye. Survey of application of deep learning in image recognition[J]. Computer Engineering and Applications, 2019, 55(12): 20–36. doi: 10.3778/j.issn.1002-8331.1903-0031
|
[32] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.
|
[33] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
|
[34] |
GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448. doi: 10.1109/ICCV.2015.169.
|
[35] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
[36] |
DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: Object detection via region-based fully convolutional networks[C]. The 30th Conference on Neural Information Processing Systems, Barcelona, Spain, 2016.
|
[37] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
|
[38] |
HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017. doi: 10.1109/ICCV.2017.322.
|
[39] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016. doi: 10.1109/CVPR.2016.91.
|
[40] |
REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525. doi: 10.1109/CVPR.2017.690.
|
[41] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
|
[42] |
FU Chengyang, LIU Wei, RANGA A, et al. DSSD: Deconvolutional single shot detector[EB/OL]. http://arxiv.org/abs/1701.06659, 2017.
|
[43] |
LI Zuoxin and ZHOU Fuqiang. FSSD: Feature fusion single shot multibox detector[EB/OL]. http://arxiv.org/abs/1712.00960, 2017.
|
[44] |
WANG Haipeng, CHEN Sizhe, XU Feng, et al. Application of deep-learning algorithms to MSTAR data[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 3743–3745. doi: 10.1109/IGARSS.2015.7326637.
|
[45] |
WAGNER S A. SAR ATR by a combination of convolutional neural network and support vector machines[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2861–2872. doi: 10.1109/TAES.2016.160061
|
[46] |
AMRANI M and JIANG Feng. Deep feature extraction and combination for synthetic aperture radar target classification[J]. Journal of Applied Remote Sensing, 2017, 11(4): 042616. doi: 10.1117/1.JRS.11.042616
|
[47] |
DENG Sheng, DU Lan, LI Chen, et al. SAR automatic target recognition based on euclidean distance restricted autoencoder[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7): 3323–3333. doi: 10.1109/JSTARS.2017.2670083
|
[48] |
WANG Zhaocheng, DU Lan, MAO Jiashun, et al. SAR target detection based on SSD with data augmentation and transfer learning[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 150–154. doi: 10.1109/LGRS.2018.2867242
|
[49] |
HUANG Xiayuan, NIE Xiangli, WU Wei, et al. SAR target configuration recognition based on the biologically inspired model[J]. Neurocomputing, 2017, 234: 185–191. doi: 10.1016/j.neucom.2016.12.054
|
[50] |
LIN Zhao, JI Kefeng, KANG Miao, et al. Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1091–1095. doi: 10.1109/LGRS.2017.2698213
|
[51] |
ZHANG Fan, HU Chen, YIN Qiang, et al. Multi-aspect-aware bidirectional LSTM networks for synthetic aperture radar target recognition[J]. IEEE Access, 2017(5): 26880–26891. doi: 10.1109/ACCESS.2017.2773363
|
[52] |
GAO Fei, YANG Yue, WANG Jun, et al. A Deep Convolutional Generative Adversarial Networks (DCGANs)-based semi-supervised method for object recognition in Synthetic Aperture Radar (SAR) images[J]. Remote Sensing, 2018, 10(6): 846. doi: 10.3390/rs10060846
|
[53] |
HUANG Yan, LIAO Guisheng, ZHANG Zhen, et al. SAR automatic target recognition using joint low-rank and sparse multiview denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1570–1574. doi: 10.1109/LGRS.2018.2851146
|
[54] |
SHANG Ronghua, WANG Jiaming, JIAO Licheng, et al. SAR targets classification based on deep memory convolution neural networks and transfer parameters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2834–2846. doi: 10.1109/JSTARS.2018.2836909
|
[55] |
AN Quanzhi, PAN Zongxu, and YOU Hongjian. Ship detection in Gaofen-3 SAR images based on sea clutter distribution analysis and deep convolutional neural network[J]. Sensors, 2018, 18(2): 334. doi: 10.3390/s18020334
|
[56] |
朱明明, 许悦雷, 马时平, 等. 改进区域卷积神经网络的机场检测方法[J]. 光学学报, 2018, 38(7): 0728001. doi: 10.3788/AOS201838.0728001
ZHU Mingming, XU Yuelei, MA Shiping, et al. Airport detection method with improved region-based convolutional neural network[J]. Acta Optica Sinica, 2018, 38(7): 0728001. doi: 10.3788/AOS201838.0728001
|
[57] |
XIE Jie, HE Nanjun, FANG Leyuan, et al. Scale-free convolutional neural network for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6916–6928. doi: 10.1109/TGRS.2019.2909695
|
[58] |
宋建社, 郑永安, 袁礼海. 合成孔径雷达图像理解与应用[M]. 北京: 科学出版社, 2008: 53–67.
SONG Jianshe, ZHENG Yongan, and YUAN Lihai. Understanding and Applications of Synthetic Aperture Radar Images[M]. Beijing: Science Press, 2008: 53–67.
|
[59] |
ZHANG Tao, JI Jinsheng, LI Xiaofeng, et al. Ship detection from PolSAR imagery using the complete polarimetric covariance difference matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 2824–2839. doi: 10.1109/TGRS.2018.2877821
|
[60] |
El-DARYMLI K, MCGUIRE P, POWER D, et al. Target detection in synthetic aperture radar imagery: A state-of-the-art survey[J]. Journal of Applied Remote Sensing, 2013, 7(1): 071598. doi: 10.1117/1.JRS.7.071598
|
[61] |
高君, 高鑫, 孙显. 基于几何特征的高分辨率SAR图像飞机目标解译方法[J]. 国外电子测量技术, 2015, 34(8): 21–28. doi: 10.3969/j.issn.1002-8978.2015.08.008
GAO Jun, GAO Xin, and SUN Xian. Geometrical features-based method for aircraft target interpretation in high-resolution SAR images[J]. Foreign Electronic Measurement Technology, 2015, 34(8): 21–28. doi: 10.3969/j.issn.1002-8978.2015.08.008
|
[62] |
林煜东. 复杂背景下的光学遥感图像目标检测算法研究[D]. [博士论文], 西南交通大学, 2017: 24–47.
LIN Yudong. Target detection in optical remote sensing images with complecated background[D]. [Ph.D. dissertation], Southwest Jiaotong University, 2017: 24–47.
|
[63] |
CHEN Jiehong, ZHANG Bo, and WANG Chao. Backscattering feature analysis and recognition of civilian aircraft in TerraSAR-X images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 796–800. doi: 10.1109/LGRS.2014.2362845
|
[64] |
郭倩, 王海鹏, 徐丰. 星载合成孔径雷达图像的飞机目标检测[J]. 上海航天, 2018, 35(6): 57–64. doi: 10.19328/j.cnki.1006-1630.2018.06.010
GUO Qian, WANG Haipeng, and XU Feng. Aircraft target detection from spaceborne synthetic aperture radar image[J]. Aerospace Shanghai, 2018, 35(6): 57–64. doi: 10.19328/j.cnki.1006-1630.2018.06.010
|
[65] |
HU Xiangyun, SHEN Jiajie, SHAN Jie, et al. Local edge distributions for detection of salient structure textures and objects[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 466–470. doi: 10.1109/LGRS.2012.2210188
|
[66] |
LI Lu, DU Lan, and WANG Zhaocheng. Target detection based on dual-domain sparse reconstruction saliency in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4230–4243. doi: 10.1109/JSTARS.2018.2874128
|
[67] |
DOU Fangzheng, DIAO Wenhui, SUN Xian, et al. Aircraft recognition in high resolution SAR images using saliency map and scattering structure features[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016. doi: 10.1109/IGARSS.2016.7729402.
|
[68] |
FU Kun, DOU Fangzheng, LI Hengchao, et al. Aircraft recognition in SAR images based on scattering structure feature and template matching[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4206–4217. doi: 10.1109/JSTARS.2018.2872018
|
[69] |
HE Chu, TU Mingxia, LIU Xinlong, et al. Mixture statistical distribution based multiple component model for target detection in high resolution SAR imagery[J]. ISPRS International Journal of Geo-Information, 2017, 6(11): 336. doi: 10.3390/ijgi6110336
|
[70] |
TAN Yihua, LI Qingyun, LI Yansheng, et al. Aircraft detection in high-resolution SAR images based on a gradient textural saliency map[J]. Sensors, 2015, 15(9): 23071–23094. doi: 10.3390/s150923071
|
[71] |
王思雨, 高鑫, 孙皓, 等. 基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J]. 雷达学报, 2017, 6(2): 195–203. doi: 10.12000/JR17009
WANG Siyu, GAO Xin, SUN Hao, et al. An aircraft detection method based on convolutional neural networks in high-resolution SAR images[J]. Journal of Radars, 2017, 6(2): 195–203. doi: 10.12000/JR17009
|
[72] |
DOU Fangzheng, DIAO Wenhui, SUN Xian, et al. Aircraft reconstruction in high-resolution SAR images using deep shape prior[J]. ISPRS International Journal of Geo-Information, 2017, 6(11): 330. doi: 10.3390/ijgi6110330
|
[73] |
HE Chu, TU Mingxia, XIONG Dehui, et al. Adaptive component selection-based discriminative model for object detection in high-resolution SAR imagery[J]. ISPRS International Journal of Geo-Information, 2018, 7(2): 72. doi: 10.3390/ijgi7020072
|
[74] |
AN Quanzhi, PAN Zongxu, LIU Lei, et al. DRBox-v2: An improved detector with rotatable boxes for target detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8333–8349. doi: 10.1109/TGRS.2019.2920534
|
[75] |
赵丹新, 孙胜利. 基于ResNet的遥感图像飞机目标检测新方法[J]. 电子设计工程, 2018, 26(22): 164–168. doi: 10.3969/j.issn.1674-6236.2018.22.036
ZHAO Danxin and SUN Shengli. A new method for target detection of remote sensing image based on ResNet. computer engineering and applications[J]. Electronic Design Engineering, 2018, 26(22): 164–168. doi: 10.3969/j.issn.1674-6236.2018.22.036
|
[76] |
ZHANG Linbin, LI Chuyin, ZHAO Lingjun, et al. A cascaded three-look network for aircraft detection in SAR images[J]. Remote Sensing Letters, 2020, 11(1): 57–65. doi: 10.1080/2150704X.2019.1681599
|
[77] |
HE Chu, TU Mingxia, XIONG Dehui, et al. A component-based multi-layer parallel network for airplane detection in SAR imagery[J]. Remote Sensing, 2018, 10(7): 1016. doi: 10.3390/rs10071016
|
[78] |
谭振宇, 江刚武, 刘建辉. 一种结合非顶层特征图和自适应阈值的飞机目标检测算法[J]. 测绘科学技术学报, 2019, 36(4): 382–387.
TAN Zhenyu, JIANG Gangwu, and LIU Jianhui. A combination of non-top-level feature maps and adaptive thresholds aircraft target detection algorithm[J]. Journal of Geomatics Science and Technology, 2019, 36(4): 382–387.
|
[79] |
LIN Zhao, JI Kefeng, LENG Xiangguang, et al. Squeeze and excitation rank faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(5): 751–755. doi: 10.1109/LGRS.2018.2882551
|
[80] |
CUI Zongyong, LI Qi, CAO Zongjie, et al. Dense attention pyramid networks for multi-scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8983–8997. doi: 10.1109/TGRS.2019.2923988
|
[81] |
WEI Shunjun, SU Hao, MING Jing, et al. Precise and robust ship detection for high-resolution SAR imagery based on HR-SDNet[J]. Remote Sensing, 2020, 12(1): 167. doi: 10.3390/rs12010167
|
[82] |
ZHAO Yan, ZHAO Lingjun, LI Chuyin, et al. Pyramid attention dilated network for aircraft detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2020. doi: 10.1109/LGRS.2020.2981255
|
[83] |
GUO Qian, WANG Haipeng, and XU Feng. Aircraft detection in high-resolution SAR images using scattering feature information[C]. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, Xiamen, China, 2019: 1–5. doi: 10.1109/APSAR46974.2019.9048502.
|
[84] |
徐丰, 金亚秋. 从物理智能到微波视觉[J]. 科技导报, 2018, 36(10): 30–44. doi: 10.3981/j.issn.1000-7857.2018.10.004
XU Feng and JIN Yaqiu. From the emergence of intelligent science to the research of microwave vision[J]. Science &Technology Review, 2018, 36(10): 30–44. doi: 10.3981/j.issn.1000-7857.2018.10.004
|