Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080
Citation: HUANG Datong, XING Shiqi, LIU Yemin, et al. Fake SAR signal generation method based on noise convolution modulation[J]. Journal of Radars, 2020, 9(5): 898–907. doi: 10.12000/JR20094

Fake SAR Signal Generation Method Based on Noise Convolution Modulation

DOI: 10.12000/JR20094
Funds:  The National Natural Science Foundation of China (61971429, 61901499)
More Information
  • Corresponding author: XING Shiqi, xingshiqi_paper@163.com
  • Received Date: 2020-07-07
  • Rev Recd Date: 2020-09-17
  • Available Online: 2020-10-07
  • Publish Date: 2020-10-28
  • Suppression position of the traditional noise convolution modulation Synthetic Aperture Radar (SAR) jamming lags behind in range and suppression area in azimuth is uncontrollable. Considering this defect, an enhanced jamming method is proposed herein. First, the frequency of the intercepted signal is shifted in fast-time to control the suppression position in range. Then, the convolution with the noise is implemented, which has been filtered in slow-time, to control the suppression area in azimuth. Theoretical analysis and simulation results demonstrate that the proposed jamming method can efficiently control the jamming position in range and suppression area when compared with the traditional noise convolution modulation jamming. Even if some reconnaissance errors exist, the local scenario can still be shielded effectively. Furthermore, the utilization efficiency of jamming energy is also improved under the same condition, which will provide some reference values and inputs for engineering applications.

     

  • [1]
    CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005.
    [2]
    纪朋徽, 代大海, 吴昊, 等. SAR成像电子对抗技术综述[J]. 无线电工程, 2019, 49(6): 508–513.

    JI Penghui, DAI Dahai, WU Hao, et al. Review of SAR imaging electronic countermeasures[J]. Radio Engineering, 2019, 49(6): 508–513.
    [3]
    SUN Hongbo, SHIMADA M, and XU Feng. Recent advances in synthetic aperture radar remote sensing-systems, data processing, and applications[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2013–2016. doi: 10.1109/LGRS.2017.2747602
    [4]
    CHANG Xin and DONG Chunxi. A barrage noise jamming method based on double jammers against three channel SAR GMTI[J]. IEEE Access, 2019, 7: 18755–18763. doi: 10.1109/ACCESS.2019.2897043
    [5]
    刘玉玲. SAR有源假目标精确位置欺骗干扰技术研究[D]. [硕士论文], 国防科学技术大学, 2012.

    LIU Yuling. Research on SAR precisely position deception jamming[D]. [Master dissertation], National University of Defense Technology, 2012.
    [6]
    SCHLEHER D C. Electronic Warfare in the Information Age[M]. Boston, MA: Artech House, 2000.
    [7]
    李欣, 王春阳, 原慧, 等. 雷达灵巧干扰样式建模及仿真研究[J]. 航天电子对抗, 2015, 31(5): 38–41, 59.

    LI Xin, WANG Chunyang, YUAN Hui, et al. The modeling and simulation of radar smart jamming types[J]. Aerospace Electronic Warfare, 2015, 31(5): 38–41, 59.
    [8]
    ABOUELFADL A, SAMIR A M, AHMED F M, et al. Performance analysis of LFM pulse compression radar under effect of convolution noise jamming[C]. The 2016 33rd National Radio Science Conference, Aswan, Egypt, 2016: 282–289.
    [9]
    GONG Shixian, WEI Xizhang, LI Xiang, et al. Mathematic principle of active jamming against wideband LFM radar[J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 50–60. doi: 10.1109/JSEE.2015.00008
    [10]
    HAO Honglian, ZENG Dazhi, GE Ping, et al. Research on the method of smart noise jamming on pulse radar[C]. The 2015 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control, Qinhuangdao, China, 2015: 1339–1342.
    [11]
    邱杰. 灵巧噪声干扰本质含义探讨[J]. 海军航空工程学院学报, 2011, 26(5): 481–484.

    QIU Jie. Research on essential signification of smart noise jamming[J]. Journal of Naval Aeronautical and Astronautical University, 2011, 26(5): 481–484.
    [12]
    曾云健, 陶建锋, 孙青. 灵巧噪声在SAR中的干扰应用研究[J]. 航天电子对抗, 2009, 25(2): 39–41.

    ZENG Yunjian, TAO Jianfeng, and SUN Qing. Application and research of smart noise in jamming SAR[J]. Aerospace Electronic Warfare, 2009, 25(2): 39–41.
    [13]
    吕波, 冯起, 张晓发, 等. 对SAR的随机脉冲卷积干扰研究[J]. 中国电子科学研究院学报, 2008, 3(3): 276–279.

    LV Bo, FENG Qi, ZHANG Xiaofa, et al. Study of random pulse convolution jamming to SAR[J]. Journal of CAEIT, 2008, 3(3): 276–279.
    [14]
    降佳伟, 吴彦鸿, 王宏艳, 等. 一种对SAR-GMTI的密集假目标干扰技术[J]. 舰船电子对抗, 2016, 39(1): 9–14, 88.

    JIANG Jiawei, WU Yanhong, WANG Hongyan, et al. A dense false target jamming technique against SAR-GMTI[J]. Shipboard Electronic Countermeasure, 2016, 39(1): 9–14, 88.
    [15]
    周传晟. 合成孔径雷达卷积干扰技术的研究[J]. 舰船电子对抗, 2013, 36(2): 6–10.

    ZHOU Chuansheng. Study of convolution jamming technology of synthetic aperture radar[J]. Shipboard Electronic Countermeasure, 2013, 36(2): 6–10.
    [16]
    沈爱国, 姜秋喜. 脉冲卷积干扰技术在超宽带SAR中的应用分析[J]. 电光与控制, 2010, 17(2): 39–42.

    SHEN Aiguo and JIANG Qiuxi. Analysis of pulse convolution jamming technique applied to counter UWB SAR[J]. Electronics Optics &Control, 2010, 17(2): 39–42.
    [17]
    黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的移频干扰研究[J]. 宇航学报, 2006, 27(3): 463–468.

    HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. A study on the shift-frequency jamming to SAR[J]. Journal of Astronautics, 2006, 27(3): 463–468.
    [18]
    黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的随机移频干扰[J]. 信号处理, 2007, 23(1): 41–45.

    HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. Randomly-shift-frequency jamming style to SAR[J]. Signal Processing, 2007, 23(1): 41–45.
    [19]
    黄洪旭, 黄知涛, 吴京, 等. 对合成孔径雷达的步进移频干扰[J]. 宇航学报, 2011, 32(4): 898–902.

    HUANG Hongxu, HUANG Zhitao, Wu Jing, et al. Stepped-shift-frequency jamming to SAR[J]. Journal of Astronautics, 2011, 32(4): 898–902.
    [20]
    YANG Kaizhi, YE Wei, MA Fangfang, et al. A large-scene deceptive jamming method for space-borne SAR based on time-delay and frequency-shift with template segmentation[J]. Remote Sensing, 2020, 12(1): 53. doi: 10.3390/rs12010053
    [21]
    和小冬. 弹载合成孔径雷达干扰技术研究[D]. [博士论文], 电子科技大学, 2015.

    HE Xiaodong. Research on the jamming technologies of missile-borne synthetic aperture radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2015.
    [22]
    YE Wei, RUAN Hang, ZHANG Shuxian, et al. Study of noise jamming based on convolution modulation to SAR[C]. 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, Changchun, China, 2010: 169–172.
    [23]
    房明星, 王杰贵, 雷磊. SAR雷达二维噪声卷积调制干扰研究[J]. 现代防御技术, 2014, 42(2): 139–144, 160. doi: 10.3969/j.issn.1009-086x.2014.02.025

    FANG Mingxing, WANG Jiegui, and LEI Lei. Study on 2D noise convolution modulation jamming to SAR[J]. Modern Defense Technology, 2014, 42(2): 139–144, 160. doi: 10.3969/j.issn.1009-086x.2014.02.025
    [24]
    ZHANG Yanbin. Technology of smart noise jamming based on multiplication modulation[C]. 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 2011: 4557–4559.
    [25]
    朱宁龙, 刘海亮. 移频对卷积调制灵巧噪声干扰的影响研究[J]. 舰船电子对抗, 2016, 39(2): 17–20. doi: 10.16426/j.cnki.jcdzdk.2016.02.005

    ZHU Ninglong and LIU Hailiang. Research into the influence of frequency shift on smart noise jamming with convolution modulation[J]. Shipboard Electronic Countermeasure, 2016, 39(2): 17–20. doi: 10.16426/j.cnki.jcdzdk.2016.02.005
    [26]
    林欢, 甘德云, 李宏, 等. 基于移频卷积的合成孔径雷达干扰技术研究[J]. 军械工程学院学报, 2014, 26(4): 47–50.

    LIN Huan, GAN Deyun, LI Hong, et al. Interference technology research of synthetic aperture radar based on frequency-shift convolution[J]. Journal of Ordnance Engineering College, 2014, 26(4): 47–50.
    [27]
    吴晓芳, 邢世其, 王雪松, 等. 对合成孔径雷达的脉间分段移频干扰[J]. 航天电子对抗, 2010, 26(1): 53–57.

    WU Xiaofang, XING Shiqi, WANG Xuesong, et al. Interpulse subsection-shift-frequency jamming to SAR[J]. Aerospace Electronic Warfare, 2010, 26(1): 53–57.
    [28]
    栾琳. 灵巧噪声干扰的建模仿真研究[D]. [硕士论文], 西安电子科技大学, 2009.

    LUAN Lin. Modeling, simulation and study of smart noise jamming[D]. [Master dissertation], Xidian University, 2009.
    [29]
    LIU Yongcai, WANG Wei, DAI Shaoqi, et al. Transmitter power comparison between incoherent noise and coherent deceptive jamming against synthetic aperture radar[C]. 2017 IEEE Microwaves, Radar and Remote Sensing Symposium, Kiev, Ukraine, 2017: 279–284.
    [30]
    刘永才. 基于卷积调制的SAR有源欺骗干扰技术[D]. [硕士论文], 国防科学技术大学, 2013.

    LIU Yongcai. Active deceptive jamming against SAR based on convolutional modulation[D]. [Master dissertation], National University of Defense Technology, 2013.
  • Relative Articles

    [1]YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198
    [2]WANG Ruichuan, WANG Yanfei. Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network[J]. Journal of Radars, 2021, 10(4): 516-530. doi: 10.12000/JR21080
    [3]LIU Tao, YANG Ziyuan, JIANG Yanni, GAO Gui. Review of Ship Detection in Polarimetric Synthetic Aperture Imagery (in English)[J]. Journal of Radars, 2021, 10(1): 1-19. doi: 10.12000/JR20155
    [4]ZHU Qingtao, YIN Junjun, ZENG Liang, YANG Jian. Polarimetric SAR Image Affine Registration Based on Neighborhood Consensus[J]. Journal of Radars, 2021, 10(1): 49-60. doi: 10.12000/JR20120
    [5]PANG Lei, ZHANG Fengli, WANG Guojun, LIU Na, SHAO Yun, ZHANG Jiameng, ZHAO Yuchuan, PANG Lei. Imaging Simulation and Damage Assessment Feature Analysis of Ku Band Polarized SAR of Buildings[J]. Journal of Radars, 2020, 9(3): 578-587. doi: 10.12000/JR20061
    [6]QIN Xianxiang, YU Wangsheng, WANG Peng, CHEN Tianping, ZOU Huanxin. Weakly Supervised Classification of PolSAR Images Based on Sample Refinement with Complex-Valued Convolutional Neural Network[J]. Journal of Radars, 2020, 9(3): 525-538. doi: 10.12000/JR20062
    [7]HUA Wenqiang, WANG Shuang, GUO Yanhe, XIE Wen. Semi-supervised PolSAR Image Classification Based on the Neighborhood Minimum Spanning Tree[J]. Journal of Radars, 2019, 8(4): 458-470. doi: 10.12000/JR18104
    [8]ZHANG Lamei, ZHANG Siyu, DONG Hongwei, ZHU Sha. Robust Classification of PolSAR Images Based on Pinball loss Support Vector Machine[J]. Journal of Radars, 2019, 8(4): 448-457. doi: 10.12000/JR19055
    [9]ZHANG Xiangrong, YU Xinyuan, TANG Xu, HOU Biao, JIAO Licheng. PolSAR Image Classification Method Based on Markov Discriminant Spectral Clustering[J]. Journal of Radars, 2019, 8(4): 425-435. doi: 10.12000/JR19059
    [10]HU Tao, LI Weihua, QIN Xianxiang, WANG Peng, YU Wangsheng, LI Jun. Terrain Classification of Polarimetric Synthetic Aperture Radar Images Based on Deep Learning and Conditional Random Field Model[J]. Journal of Radars, 2019, 8(4): 471-478. doi: 10.12000/JR18065
    [11]Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131
    [12]She Xiaoqiang, Qiu Xiaolan, Lei Bin, Zhang Wei, Lu Xiaojun. A Classification Method Based on Polarimetric Entropy and GEV Mixture Model for Intertidal Area of PolSAR Image[J]. Journal of Radars, 2017, 6(5): 554-563. doi: 10.12000/JR16149
    [13]Zhong Neng, Yang Wen, Yang Xiangli, Guo Wei. Unsupervised Classification for Polarimetric Synthetic Aperture Radar Images Based on Wishart Mixture Models[J]. Journal of Radars, 2017, 6(5): 533-540. doi: 10.12000/JR16133
    [14]Yang Wen, Zhong Neng, Yan Tianheng, Yang Xiangli. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. Journal of Radars, 2017, 6(5): 433-441. doi: 10.12000/JR17031
    [15]Ji Kefeng, Wang Haibo, Leng Xiangguang, Xing Xiangwei, Kang Lihong. Spaceborne Compact Polarimetric Synthetic Aperture Radar for Ship Detection[J]. Journal of Radars, 2016, 5(6): 607-619. doi: 10.12000/JR16083
    [16]Zhang Jie, Zhang Xi, Fan Chenqing, Meng Junmin. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance[J]. Journal of Radars, 2016, 5(6): 596-606. doi: 10.12000/JR16124
    [17]Hong Wen. Hybrid-polarity Architecture Based Polarimetric SAR: Principles and Applications (in English)[J]. Journal of Radars, 2016, 5(6): 559-595. doi: 10.12000/JR16074
    [18]Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. Journal of Radars, 2016, 5(6): 692-700. doi: 10.12000/JR15132
    [19]Xing Yanxiao, Zhang Yi, Li Ning, Wang Yu, Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227. doi: 10.12000/JR16019
    [20]Hua Wen-qiang, Wang Shuang, Hou Biao. Semi-supervised Learning for Classification of Polarimetric SAR Images Based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98. doi: 10.12000/JR14138
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.1 %FULLTEXT: 20.1 %META: 71.8 %META: 71.8 %PDF: 8.1 %PDF: 8.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.9 %其他: 11.9 %其他: 0.7 %其他: 0.7 %Canada: 0.1 %Canada: 0.1 %China: 0.5 %China: 0.5 %India: 0.2 %India: 0.2 %Netherlands: 0.0 %Netherlands: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %XX: 0.1 %XX: 0.1 %[]: 0.4 %[]: 0.4 %上海: 0.5 %上海: 0.5 %上海市: 0.0 %上海市: 0.0 %东莞: 0.1 %东莞: 0.1 %东营: 0.0 %东营: 0.0 %丹东: 0.0 %丹东: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰辛: 0.0 %兰辛: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %包头: 0.0 %包头: 0.0 %北京: 15.1 %北京: 15.1 %北京市: 0.0 %北京市: 0.0 %北海: 0.1 %北海: 0.1 %南京: 0.5 %南京: 0.5 %南宁: 0.1 %南宁: 0.1 %南通: 0.0 %南通: 0.0 %印度: 0.5 %印度: 0.5 %古吉拉特: 0.2 %古吉拉特: 0.2 %台州: 0.3 %台州: 0.3 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸宁: 0.0 %咸宁: 0.0 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.1 %哥伦布: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %宁波: 0.0 %宁波: 0.0 %安康: 0.1 %安康: 0.1 %宿迁: 0.2 %宿迁: 0.2 %常州: 0.1 %常州: 0.1 %常德: 0.1 %常德: 0.1 %广元: 0.1 %广元: 0.1 %广州: 0.8 %广州: 0.8 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %开封: 0.1 %开封: 0.1 %张家口: 2.4 %张家口: 2.4 %张家口市: 0.1 %张家口市: 0.1 %徐州: 0.0 %徐州: 0.0 %德黑兰: 0.1 %德黑兰: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.0 %扬州: 0.0 %新乡: 0.3 %新乡: 0.3 %无锡: 0.1 %无锡: 0.1 %日照: 0.0 %日照: 0.0 %昆明: 0.3 %昆明: 0.3 %杭州: 1.2 %杭州: 1.2 %梅州: 0.0 %梅州: 0.0 %武汉: 0.4 %武汉: 0.4 %永州: 0.1 %永州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %河池: 0.1 %河池: 0.1 %泰安: 0.1 %泰安: 0.1 %济南: 0.4 %济南: 0.4 %淮南: 0.1 %淮南: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.8 %深圳: 0.8 %温州: 0.1 %温州: 0.1 %渭南: 0.2 %渭南: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.1 %漯河: 0.1 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.4 %石家庄: 0.4 %石家庄市: 0.1 %石家庄市: 0.1 %纽约: 0.1 %纽约: 0.1 %芒廷维尤: 17.1 %芒廷维尤: 17.1 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.0 %苏州: 0.0 %荷兰北布拉班特省: 0.1 %荷兰北布拉班特省: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡阳: 0.1 %衡阳: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 35.8 %西宁: 35.8 %西安: 1.0 %西安: 1.0 %西雅图: 0.0 %西雅图: 0.0 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %车士活: 0.0 %车士活: 0.0 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.2 %重庆: 0.2 %铁岭: 0.0 %铁岭: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.5 %长沙: 0.5 %长治: 0.1 %长治: 0.1 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.0 %鞍山: 0.0 %韶关: 0.0 %韶关: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %其他其他CanadaChinaIndiaNetherlandsTaiwan, ChinaXX[]上海上海市东莞东营丹东伊利诺伊州佛山保定兰辛凤凰城包头北京北京市北海南京南宁南通印度古吉拉特台州合肥呼和浩特咸宁哈尔滨哥伦布大庆大连天津宁波安康宿迁常州常德广元广州库比蒂诺开封张家口张家口市徐州德黑兰成都扬州新乡无锡日照昆明杭州梅州武汉永州沈阳河池泰安济南淮南淮安深圳温州渭南湖州湘潭漯河潍坊烟台玉林盐城石家庄石家庄市纽约芒廷维尤芝加哥苏州荷兰北布拉班特省莫斯科葫芦岛衡阳襄阳西宁西安西雅图贵港贵阳车士活运城连云港郑州重庆铁岭长春长沙长治阳泉青岛鞍山韶关香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2289) PDF downloads(182) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint