Volume 8 Issue 4
Aug.  2019
Turn off MathJax
Article Contents
HU Tao, LI Weihua, QIN Xianxiang, et al. Terrain classification of polarimetric synthetic aperture radar images based on deep learning and conditional random field model[J]. Journal of Radars, 2019, 8(4): 471–478. doi: 10.12000/JR18065
Citation: HU Tao, LI Weihua, QIN Xianxiang, et al. Terrain classification of polarimetric synthetic aperture radar images based on deep learning and conditional random field model[J]. Journal of Radars, 2019, 8(4): 471–478. doi: 10.12000/JR18065

Terrain Classification of Polarimetric Synthetic Aperture Radar Images Based on Deep Learning and Conditional Random Field Model

DOI: 10.12000/JR18065
Funds:  The National Natural Science Foundation of China (41601436, 61403414, 61703423), The Natural Science Foundation Research Project of Shaanxi Province (2018JM4029)
More Information
  • Corresponding author: QIN Xianxiang, qinxianxiang@126.com
  • Received Date: 2018-08-31
  • Rev Recd Date: 2018-12-26
  • Publish Date: 2019-08-28
  • In recent years, Polarimetric Synthetic Aperture Radar (PolSAR) image classification has been investigated extensively. The traditional PolSAR image terrain classification methods result in a weak feature representation. To overcome this limitation, this study aims to propose a terrain classification method based on deep Convolutional Neural Network (CNN) and Conditional Random Field (CRF). The pre-trained VGG-Net-16 model was used to extract more powerful image features, and then the terrain from the images was classified through the efficient use of multiple features and context information by conditional random fields. The experimental results show that the proposed method can extract more features effectively in comparison with the three methods using traditional classical features and it can also achieve a higher overall accuracy and Kappa coefficient.

     

  • loading
  • [1]
    NOVAK L M and BURL M C. Optimal speckle reduction in polarimetric SAR imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(2): 293–305. doi: 10.1109/7.53442
    [2]
    RANSON K J, SUN G, WEISHAMPEL J F, et al. An evaluation of AIRSAR and SIR-C/XSAR images for northern forest ecological studies in Maine, USA[C]. Proceedings of 1995 International Geoscience and Remote Sensing Symposium, IGARSS’95. Quantitative Remote Sensing for Science and Applications, Firenze, Italy, 1995: 994–996. doi: 10.1109/IGARSS.1995.521118.
    [3]
    YANG W, ZHANG X, CHEN L J, et al. Semantic segmentation of polarimetric SAR imagery using conditional random fields[C]. Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 2010: 1593–1596. doi: 10.1109/IGARSS.2010.5652378.
    [4]
    CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78. doi: 10.1109/36.551935
    [5]
    ZHAO L W, ZHOU X G, JIANG Y M, et al. Iterative classification of polarimetric SAR image based on the freeman decomposition and scattering entropy[C]. Proceedings of the 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007: 473–476. doi: 10.1109/APSAR.2007.4418653.
    [6]
    LEE J S, GRUNES M R, and KWOK R. Classification of multi-look polarimetric SAR imagery based on complex wishart distribution[J]. International Journal of Remote Sensing, 1994, 15(11): 2299–2311. doi: 10.1080/01431169408954244
    [7]
    BEAULIEU J M and TOUZI R. Segmentation of textured polarimetric SAR scenes by likelihood approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2063–2072. doi: 10.1109/tgrs.2004.835302
    [8]
    WU Y H, JI K F, YU W X, et al. Region-based classification of polarimetric SAR images using wishart MRF[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 668–672. doi: 10.1109/LGRS.2008.2002263
    [9]
    周晓光, 匡纲要, 万建伟. 极化SAR图像分类综述[J]. 信号处理, 2008, 24(5): 806–812. doi: 10.3969/j.issn.1003-0530.2008.05.023

    ZHOU Xiao-guang, KUANG Gang-yao, and WAN Jian-wei. A review of polarimetric SAR image classification[J]. Signal Processing, 2008, 24(5): 806–812. doi: 10.3969/j.issn.1003-0530.2008.05.023
    [10]
    胡涛, 李卫华, 秦先祥, 等. 基于深度CRF模型的图像语义分割方法[J]. 空军工程大学学报(自然科学版), 2018, 19(5): 52–57.

    HU Tao, LI Wei-hua, QIN Xian-xiang, et al. An image semantic segmentation based on deep CRF model[J]. Journal of Air Force Engineering University (Natural Science Edition), 2018, 19(5): 52–57.
    [11]
    XIE W, JIAO L C, HOU B, et al. POLSAR image classification via wishart-AE model or wishart-CAE model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(8): 3604–3615. doi: 10.1109/JSTARS.2017.2698076
    [12]
    ZHAO Z Q, JIAO L C, ZHAO J Q, et al. Discriminant deep belief network for high-resolution SAR image classification[J]. Pattern Recognition, 2017, 61: 686–701. doi: 10.1016/j.patcog.2016.05.028
    [13]
    GAO F, HUANG T, WANG J, et al. Dual-branch deep convolution neural network for polarimetric SAR image classification[J]. Applied Sciences, 2017, 7(5): 447. doi: 10.3390/app7050447
    [14]
    ZHOU Y, WANG H P, XU F, et al. Polarimetric SAR image classification using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1935–1939. doi: 10.1109/LGRS.2016.2618840
    [15]
    ZHANG Z M, WANG H P, XU F, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177–7188. doi: 10.1109/TGRS.2017.2743222
    [16]
    WANG L, XU X, DONG H, et al. Multi-pixel simultaneous classification of PolSAR image using convolutional neural networks[J]. Sensors, 2018, 18(3): 769. doi: 10.3390/s18030769
    [17]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, USA, 2012: 1097–1105. doi: 10.1145/3065386.
    [18]
    SZEGEDY C, LIU W, JIA Y Q, et al.. Going deeper with convolutions[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
    [19]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
    [20]
    RAZAVIAN A S, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: An astounding baseline for recognition[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 2014: 512–519. doi: 10.1109/CVPRW.2014.131.
    [21]
    MIKA S, SCHÖLKOPF B, SMOLA A, et al.. Kernel PCA and de-noising in feature spaces[C]. Proceedings of 1998 Conference on Advances in Neural Information Processing Systems II, Cambridge, MA, USA, 1999: 536–542.
    [22]
    LAFFERTY J D, MCCALLUM A, and PEREIRA F C N. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]. Proceedings of the 18th International Conference on Machine Learning, San Francisco, CA, USA, 2001: 282–289.
    [23]
    LI S Z. Markov Random Field Modeling in Computer Vision[M]. New York: Springer, 1995.
    [24]
    PLATT J C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[C]. Proceedings of the Advances in large Margin Classifiers, Cambrige, MA, USA, 1999: 61–74.
    [25]
    DOMKE J. Learning graphical model parameters with approximate marginal inference[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(10): 2454–2467. doi: 10.1109/TPAMI.2013.31
    [26]
    VEDALDI A and LENC K. MatConvNet: Convolutional neural networks for MATLAB[C]. Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 689–692. doi: 10.1145/2733373.2807412.
    [27]
    韩萍, 韩宾宾. 基于典型散射差异指数的PolSAR图像Lee滤波[J]. 系统工程与电子技术, 2018, 40(2): 287–294.

    HAN Ping and HAN Bin-bin. Lee filter of PolSAR image based on typical scattering difference index[J]. Systems Engineering and Electronics, 2018, 40(2): 287–294.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4430) PDF downloads(331) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint