Volume 5 Issue 2
Apr.  2016
Turn off MathJax
Article Contents
Xing Yanxiao, Zhang Yi, Li Ning, Wang Yu, Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227. doi: 10.12000/JR16019
Citation: Xing Yanxiao, Zhang Yi, Li Ning, Wang Yu, Hu Guixiang. Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues[J]. Journal of Radars, 2016, 5(2): 217-227. doi: 10.12000/JR16019

Polarimetric SAR Image Supervised Classification Method Integrating Eigenvalues

DOI: 10.12000/JR16019
Funds:

The National Natural Science Foundation of China (61422113)

  • Received Date: 2016-01-25
  • Rev Recd Date: 2016-03-11
  • Publish Date: 2016-04-28
  • Since classification methods based on H/ space have the drawback of yielding poor classification results for terrains with similar scattering features, in this study, we propose a polarimetric Synthetic Aperture Radar (SAR) image classification method based on eigenvalues. First, we extract eigenvalues and fit their distribution with an adaptive Gaussian mixture model. Then, using the naive Bayesian classifier, we obtain preliminary classification results. The distribution of eigenvalues in two kinds of terrains may be similar, leading to incorrect classification in the preliminary step. So, we calculate the similarity of every terrain pair, and add them to the similarity table if their similarity is greater than a given threshold. We then apply the Wishart distance-based KNN classifier to these similar pairs to obtain further classification results. We used the proposed method on both airborne and spaceborne SAR datasets, and the results show that our method can overcome the shortcoming of the H/-based unsupervised classification method for eigenvalues usage, and produces comparable results with the Support Vector Machine (SVM)-based classification method.

     

  • loading
  • [1]
    Lee J S and Pottier E. 极化合成孔径雷达成像基础与应用[M]. 北京: 电子工业出版社, 2013: 199-223. Lee J S and Pottier E. Polarimetric Radar Imaging: From Basics to Applications[M]. Beijing: Publishing House of Electronic Industry, 2013: 199-223.
    [2]
    滑文强, 王爽, 侯彪. 基于半监督学习的SVM-Wishart极化SAR图像分类方法[J]. 雷达学报, 2015, 4(1): 93-98. Hua Wen-qiang, Wang Shuang, and Hou Biao. Semi-supervised learning for classification of polarimetric SAR images based on SVM-Wishart[J]. Journal of Radars, 2015, 4(1): 93-98.
    [3]
    Lee J S, Grunes M R, and Kwok R. Classification of multilook polarimetric SAR imagery based on complex Wishart distribution[J]. International Journal of Remote Sensing, 1994, 15(11): 2299-2311.
    [4]
    Cloude S R and Pottier E. An entropy based classication scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78.
    [5]
    Tzeng Y C and Chen K S. A fuzzy neural network to SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(1): 301-307.
    [6]
    Lee J S, Grunes M R, Ainsworth T L, et al.. Unsupervised classification using polarimetricdecomposition and the complex Wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249-2258.
    [7]
    Famil L F, Pottier E, and Lee J S. Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/-Wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2332-2342.
    [8]
    Lee J S, Grunes M R, Pottier E, et al.. Unsupervised terrain classification preserving polarimetric scattering characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722-731.
    [9]
    Cao F, Hong W, and Wu Y R. An unsupervised segmentation with an adaptive number of clusters using theSPAN/H//Aspace and the complex Wishart clusteringfor fully polarimetric SAR data analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3454-3467.
    [10]
    Lardeux C, Frison P L, Tison C, et al.. Support vector machine for multifrequency SAR polarimetric data classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12): 4143-4151.
    [11]
    Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498-518.
    [12]
    周伟, 孙艳丽, 许成斌, 等. 一种多极化SAR 舰船目标与方位向模糊鉴别方法[J]. 雷达学报, 2015, 4(1): 84-92. Zhou Wei, Sun Yan-li, Xu Cheng-bin, et al.. A method for discrimination of ship target and azimuth ambiguity in multi-polarimetric SAR imagery[J]. Journal of Radars, 2015, 4(1): 84-92.
    [13]
    Gou S P, Qiao X, Zhang X R, et al.. Eigenvalue analysis-based approach for POL-SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 805-818.
    [14]
    李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 37-53. Li Hang. Statistical Learning Methods[M]. Beijing: Tsinghua University Press, 2000: 37-53.
    [15]
    王鑫. 基于高斯混合模型的k均值初始化EM 算法的研究[J]. 商丘师范学院学报, 2012, 28(12): 11-14. Wang Xin. Gaussian mixture model based k-means to initialize the EM algorithm[J]. Journal of Shangqiu Normal University, 2012, 28(12): 11-14.
    [16]
    Dempster A P, Laird N M, and Rubin D B. Maximum-likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 39(1): 1-38.
    [17]
    Liu B, Hu H, Wang H Y, et al.. Superpixel-based classification with an adaptive number of classes for polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 907-924.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2559) PDF downloads(1122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint