Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157
Citation: ZHENG Guimei, SONG Yuwei, HU Guoping, et al. Height measurement for meter-wave MIMO radar based on block orthogonal matching pursuit preprocessing[J]. Journal of Radars, 2020, 9(5): 908–915. doi: 10.12000/JR20042

Height Measurement for Meter-wave MIMO Radar Based on Block Orthogonal Matching Pursuit Preprocessing

DOI: 10.12000/JR20042
Funds:  The Young Talent fund of University Association for Science and Technology in Shaanxi of China(20180109), The National Natural Science Foundation of China(61871395, 61971438), The Natural Science Basic Research Plan in Shaanxi Province of China (2019JM-155, 2020JM-345)
More Information
  • Corresponding author: ZHENG Guimei, zheng-gm@163.com
  • Received Date: 2020-04-17
  • Rev Recd Date: 2020-06-04
  • Available Online: 2020-06-25
  • Publish Date: 2020-10-28
  • Meter-wave radar has good anti-stealth performance. The waveform diversity of Multiple-Input Multiple-Output (MIMO) radar can result in a higher degree of freedom, which makes MIMO radar more advantageous in detection and parameter estimation. Therefore, meter-wave MIMO radar has been widely studied. The radar height measurement is one of the most important research problems of the meter-wave MIMO radar. The maximum likelihood and generalized multiple signal classification algorithms are effective for measuring the radar height. However, they feature heavy computation complexity. In this paper, a preprocessing method based on Block Orthogonal Matching Pursuit (BOMP) is proposed to reduce the computation. First, the received data of MIMO array are sparse-processed, and then, using a mathematical operation, they are transformed into a signal model suitable for the BOMP algorithm; then coarse angle estimation is obtained using a large search grid. The coarse angle estimation is taken as the initial value, and the MIMO radar beam width as the search range. The simulation results show that the proposed algorithm can effectively reduce the computation of the search-type height measurement algorithm.

     

  • [1]
    KUSCHEL H. VHF/UHF radar. 1. Characteristics[J]. Electronics & Communication Engineering Journal, 2002, 14(2): 61–72.
    [2]
    KUSCHEL H. VHF/UHF radar Part 2: Operational aspects and applications[J]. Electronics & Communication Engineering Journal, 2002, 14(3): 101–111.
    [3]
    LIU Yuan, LIU Hongwei, XIA Xianggen, et al. Projection techniques for altitude estimation over complex multipath condition-based VHF radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2362–2374. doi: 10.1109/JSTARS.2018.2835448
    [4]
    王胜华. 雷达低仰角目标检测与测高关键技术研究[D]. [博士论文], 西安电子科技大学, 2019.

    WANG Shenghua. Research on key technology of low angle radar target detection and elevation measurement[D]. [Ph. D. dissertation], Xidian University, 2019.
    [5]
    谭俊. 米波雷达低仰角测角中多径效应影响抑制及关键技术研究[D]. [博士论文], 电子科技大学, 2019.

    TAN Jun. Research on multipath effect suppression and key technologies in low-angle measurement of meter wave radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2019.
    [6]
    XIANG Houhong, CHEN Baixiao, YANG Minglei, et al. Altitude measurement based on characteristics reversal by deep neural network for VHF radar[J]. IET Radar, Sonar & Navigation, 2019, 13(1): 98–103.
    [7]
    陆鹏程, 吴剑旗. 米波MIMO雷达系统设计的几个问题[J]. 雷达科学与技术, 2017, 15(3): 236–240, 246.

    LU Pengcheng and WU Jianqi. Some issues on VHF MIMO radar system design[J]. Radar Science and Technology, 2017, 15(3): 236–240, 246.
    [8]
    刘俊, 刘峥, 谢荣, 等. 基于波束空间的米波MIMO雷达角度估计算法[J]. 电子学报, 2011, 39(9): 1961–1966.

    LIU Jun, LIU Zheng, XIE Rong, et al. Beam-space domain angle estimation algorithm in VHF MIMO radar[J]. Acta Electronica Sinica, 2011, 39(9): 1961–1966.
    [9]
    谢荣, 刘铮, 刘俊. 基于矩阵束的MIMO雷达低仰角快速估计方法[J]. 电子与信息学报, 2011, 33(8): 1833–1838. doi: 10.3724/SP.J.1146.2010.01242

    XIE Rong, LIU Zheng, and LIU Jun. Fast algorithm for low elevation estimation based on matrix pencil in MIMO radar[J]. Journal of Electronics &Information Technology, 2011, 33(8): 1833–1838. doi: 10.3724/SP.J.1146.2010.01242
    [10]
    刘源, 王洪先, 纠博, 等. 米波MIMO雷达低空目标波达方向估计新方法[J]. 电子与信息学报, 2016, 38(3): 622–628. doi: 10.11999/JEIT150555

    LIU Yuan, WANG Hongxian, JIU Bo, et al. A new method for DOA estimation for VHF MIMO radar in low-angle tracking environment[J]. Journal of Electronics &Information Technology, 2016, 38(3): 622–628. doi: 10.11999/JEIT150555
    [11]
    LIU Yuan, JIU Bo, XIA Xianggen, et al. Height measurement of low-angle target using MIMO radar under multipath interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 808–818. doi: 10.1109/TAES.2017.2767919
    [12]
    吴向东, 赵永波, 张守宏, 等. 一种MIMO雷达低角跟踪环境下的波达方向估计新方法[J]. 西安电子科技大学学报: 自然科学版, 2008, 35(5): 793–798.

    WU Xiangdong, ZHAO Yongbo, ZHANG Shouhong, et al. New method for DOA estimation for the MIMO radar in low-angle tracking environment[J]. Journal of Xidian University:Natural Science, 2008, 35(5): 793–798.
    [13]
    LIU J, LIU Z, and XIE R. Low angle estimation in MIMO radar[J]. Electronics Letters, 2010, 46(23): 1565–1566. doi: 10.1049/el.2010.2579
    [14]
    TAN Jun and NIE Zaiping. Polarisation smoothing generalised MUSIC algorithm with PSA monostatic MIMO radar for low angle estimation[J]. Electronics Letters, 2018, 54(8): 527–529. doi: 10.1049/el.2017.4378
    [15]
    ELDAR Y C, KUPPINGER P, and BOLCSKEI H. Block-sparse signals: Uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042–3054. doi: 10.1109/TSP.2010.2044837
    [16]
    王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004.

    WANG Yongliang, CHEN Hui, PENG Yingning, et al. Theory and Methods of Spatial Spectrum Estimation[M]. Beijing: Tsinghua University Press, 2004.
    [17]
    刘源. 米波数字阵列雷达低仰角测高方法研究[D]. [博士论文], 西安电子科技大学, 2018.

    LIU Yuan. Study on low-angle altitude measurement in VHF radar[D]. [Ph. D. dissertation], Xidian University, 2018.
  • Relative Articles

    [1]YANG Lei, HUO Xin, SHEN Ruiyang, SONG Hao, HU Zhongwei. Credible Inference of Near-field Sparse Array Synthesis for Three-dimensional Millimeter-wave Imagery[J]. Journal of Radars, 2024, 13(5): 1092-1108. doi: 10.12000/JR24097
    [2]LIN Yuqing, QIU Xiaolan, PENG Lingxiao, LI Hang, DING Chibiao. Non-line-of-sight Target Relocation by Multipath Model in SAR 3D Urban Area Imaging[J]. Journal of Radars, 2024, 13(4): 777-790. doi: 10.12000/JR24057
    [3]WANG Mou, WEI Shunjun, SHEN Rong, ZHOU Zichen, SHI Jun, ZHANG Xiaoling. 3D SAR Imaging Method Based on Learned Sparse Prior[J]. Journal of Radars, 2023, 12(1): 36-52. doi: 10.12000/JR22101
    [4]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [5]REN Zishuai, ZHANG Zhao, GAO Yuxin, GUO Rui. Three-dimensional Imaging of Tomographic SAR Based on Adaptive Elevation Constraint[J]. Journal of Radars, 2023, 12(5): 1056-1068. doi: 10.12000/JR23111
    [6]HU Zhanyi. A Note on Visual Semantics in SAR 3D Imaging[J]. Journal of Radars, 2022, 11(1): 20-26. doi: 10.12000/JR21149
    [7]JIANG Yanwen, FAN Hongqi, LI Shuangxun. A Sparse Bayesian Learning Approach for Vortex Electromagnetic Wave Three-dimensional Imaging in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 718-724. doi: 10.12000/JR21151
    [8]ZHENG Tong, JIANG Libing, WANG Zhuang. Three-dimensional Multiple-Input Multiple-Output Radar Imaging Method Based on Integration of Multi-snapshot Images[J]. Journal of Radars, 2020, 9(4): 739-752. doi: 10.12000/JR19069
    [9]SUN Dou, LU Dongwei, XING Shiqi, YANG Xiao, LI Yongzhen, WANG Xuesong. Full-polarization SAR Joint Multidimensional Reconstruction Based on Sparse Reconstruction[J]. Journal of Radars, 2020, 9(5): 865-877. doi: 10.12000/JR20092
    [10]ZHAO Wanwan, WANG Pengbo, MEN Zhirong, LI Chunsheng. Imaging Method for Co-prime-sampling Space-borne SAR Based on 2D Sparse-signal Reconstruction[J]. Journal of Radars, 2020, 9(1): 131-142. doi: 10.12000/JR19086
    [11]SHI Jun, QUE Yujia, ZHOU Zenan, ZHOU Yuanyuan, ZHANG Xiaoling, SUN Mingfang. Near-field Millimeter Wave 3D Imaging and Object Detection Method[J]. Journal of Radars, 2019, 8(5): 578-588. doi: 10.12000/JR18089
    [12]Hong Wen, Wang Yanping, Lin Yun, Tan Weixian, Wu Yirong. Research Progress on Three-dimensional SAR Imaging Techniques[J]. Journal of Radars, 2018, 7(6): 633-654. doi: 10.12000/JR18109
    [13]Hui Ye, Bai Xueru. RID Image Series-based High-resolution Three-dimensional Imaging of Micromotion Targets[J]. Journal of Radars, 2018, 7(5): 548-556. doi: 10.12000/JR18056
    [14]Gao Jingkun, Deng Bin, Qin Yuliang, Wang Hongqiang, Li Xiang. Near-field 3D SAR Imaging Techniques Using a Scanning MIMO Array[J]. Journal of Radars, 2018, 7(6): 676-684. doi: 10.12000/JR18102
    [15]Tian He, Li Daojing. Motion Compensation and 3-D Imaging Algorithm in Sparse Flight Based Airborne Array SAR[J]. Journal of Radars, 2018, 7(6): 717-729. doi: 10.12000/JR18101
    [16]Jin Tian, Song Yongping. Sparse Imaging of Building Layouts in Ultra-wideband Radar[J]. Journal of Radars, 2018, 7(3): 275-284. doi: 10.12000/JR18031
    [17]Yan Min, Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization[J]. Journal of Radars, 2018, 7(6): 705-716. doi: 10.12000/JR18067
    [18]Liu Xiangyang, Yang Jungang, Meng Jin, Zhang Xiao, Niu Dezhi. Sparse Three-dimensional Imaging Based on Hough Transform for Forward-looking Array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316-323. doi: 10.12000/JR17011
    [19]He Feng, Yang Yang, Dong Zhen, Liang Dian-nong. Progress and Prospects of Curvilinear SAR 3-D Imaging[J]. Journal of Radars, 2015, 4(2): 130-135. doi: 10.12000/JR14119
    [20]Wang Jie, Shen Ming-wei, Wu Di, Zhu Dai-yin. An Efficient STAP Algorithm for Nonsidelooking Airborne Radar Based on Mainlobe Clutter Compensation[J]. Journal of Radars, 2014, 3(2): 235-240. doi: 10.3724/SP.J.1300.2014.13122
  • Cited by

    Periodical cited type(14)

    1. 董孟琛,杨剑,李传祥,李伙明. 一种基于复合滤波的海面雷达距离多普勒图像去噪算法. 火箭军工程大学学报. 2025(01): 13-20 .
    2. 汪翔,王彦斌,汪育苗,崔国龙. 基于图神经网络的多尺度特征融合雷达目标检测方法. 雷达科学与技术. 2025(01): 39-47 .
    3. 施端阳,林强,胡冰,杜小帅. 基于YOLO的航管一次雷达目标检测方法. 系统工程与电子技术. 2024(01): 143-151 .
    4. 周利,胡杰民,付连庆,凌三力. 基于MDCFT与水平集的高海情弹载雷达成像检测方法. 系统工程与电子技术. 2024(04): 1247-1254 .
    5. 汪翔,汪育苗,陈星宇,臧传飞,崔国龙. 基于深度学习的多特征融合海面目标检测方法. 雷达学报. 2024(03): 554-564 . 本站查看
    6. 许述文,何绮,茹宏涛. 基于无监督图互信息最大化的海面小目标异常检测. 电子与信息学报. 2024(07): 2712-2720 .
    7. 关键,伍僖杰,丁昊,刘宁波,黄勇,曹政,魏嘉彧. 基于三维凹包学习算法的海面小目标检测方法. 电子与信息学报. 2023(05): 1602-1610 .
    8. 薛安克,毛克成,张乐. 多分类器联合虚警可控的海上小目标检测方法. 电子与信息学报. 2023(07): 2528-2536 .
    9. 施赛楠,姜丽,李东宸,吴旭姿. 基于双重虚警控制XGBoost的海面小目标检测. 雷达科学与技术. 2023(03): 314-323+328 .
    10. 刘安邦,施赛楠,杨静,曹鼎. 基于虚警可控梯度提升树的海面小目标检测. 南京信息工程大学学报(自然科学版). 2022(03): 341-347 .
    11. 许述文,茹宏涛. 基于标签传播算法的海面漂浮小目标检测方法. 电子与信息学报. 2022(06): 2119-2126 .
    12. 关键,伍僖杰,丁昊,刘宁波,董云龙,张鹏飞. 基于对角积分双谱的海面慢速小目标检测方法. 电子与信息学报. 2022(07): 2449-2460 .
    13. 施端阳,林强,胡冰,张馨予. 深度学习在雷达目标检测中的应用综述. 雷达科学与技术. 2022(06): 589-605 .
    14. 伍僖杰,丁昊,刘宁波,关键. 基于时频脊-Radon变换的海面小目标检测方法. 信号处理. 2021(09): 1599-1611 .

    Other cited types(22)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.1 %FULLTEXT: 21.1 %META: 71.0 %META: 71.0 %PDF: 7.9 %PDF: 7.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.7 %其他: 17.7 %其他: 0.3 %其他: 0.3 %China: 0.4 %China: 0.4 %India: 0.0 %India: 0.0 %Kao-sung: 0.1 %Kao-sung: 0.1 %Rochester: 0.0 %Rochester: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.3 %[]: 0.3 %上海: 2.1 %上海: 2.1 %东莞: 0.3 %东莞: 0.3 %丹东: 0.0 %丹东: 0.0 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %九江: 0.1 %九江: 0.1 %休斯敦: 0.1 %休斯敦: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰州: 0.1 %兰州: 0.1 %包头: 0.0 %包头: 0.0 %北京: 13.4 %北京: 13.4 %十堰: 0.0 %十堰: 0.0 %南京: 1.2 %南京: 1.2 %南宁: 0.0 %南宁: 0.0 %南昌: 0.1 %南昌: 0.1 %厦门: 0.1 %厦门: 0.1 %台北: 0.0 %台北: 0.0 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %商洛: 0.0 %商洛: 0.0 %嘉兴: 0.1 %嘉兴: 0.1 %固原: 0.1 %固原: 0.1 %多伦多: 0.1 %多伦多: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %太原: 0.0 %太原: 0.0 %威海: 0.0 %威海: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.0 %宿迁: 0.0 %常州: 0.3 %常州: 0.3 %常德: 0.2 %常德: 0.2 %广州: 0.8 %广州: 0.8 %延安: 0.0 %延安: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 1.0 %张家口: 1.0 %张家口市: 0.0 %张家口市: 0.0 %德州: 0.0 %德州: 0.0 %忻州市代县: 0.1 %忻州市代县: 0.1 %成都: 0.3 %成都: 0.3 %扬州: 0.2 %扬州: 0.2 %新乡: 0.6 %新乡: 0.6 %无锡: 0.3 %无锡: 0.3 %昆明: 0.4 %昆明: 0.4 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.3 %杭州: 1.3 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.2 %桂林: 0.2 %武汉: 0.3 %武汉: 0.3 %永州: 0.1 %永州: 0.1 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %泰安: 0.2 %泰安: 0.2 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %淮南: 0.0 %淮南: 0.0 %淮安: 0.0 %淮安: 0.0 %深圳: 0.5 %深圳: 0.5 %温州: 0.0 %温州: 0.0 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.2 %漯河: 0.2 %玉林: 0.0 %玉林: 0.0 %石家庄: 0.6 %石家庄: 0.6 %石家庄市: 0.0 %石家庄市: 0.0 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽伦堡: 0.1 %纽伦堡: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %罗奥尔凯埃: 0.1 %罗奥尔凯埃: 0.1 %罗拉赫: 0.1 %罗拉赫: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %芒廷维尤: 16.0 %芒廷维尤: 16.0 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.4 %苏州: 0.4 %莫斯科: 0.1 %莫斯科: 0.1 %衡水: 0.3 %衡水: 0.3 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 28.6 %西宁: 28.6 %西安: 1.6 %西安: 1.6 %西安市: 0.0 %西安市: 0.0 %贵港: 0.4 %贵港: 0.4 %运城: 0.3 %运城: 0.3 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.2 %重庆: 0.2 %钱德勒: 0.2 %钱德勒: 0.2 %长春: 0.1 %长春: 0.1 %长沙: 1.3 %长沙: 1.3 %长治: 0.1 %长治: 0.1 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %随州: 0.0 %随州: 0.0 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.1 %驻马店: 0.1 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ChinaIndiaKao-sungRochesterUnited States[]上海东莞丹东乌鲁木齐九江休斯敦佛山保定兰州包头北京十堰南京南宁南昌厦门台北台州合肥吉林呼和浩特哥伦布商洛嘉兴固原多伦多大连天津太原威海宝鸡宣城宿迁常州常德广州延安开封张家口张家口市德州忻州市代县成都扬州新乡无锡昆明晋城朝阳杭州格兰特县桂林武汉永州沈阳沧州泰安泰米尔纳德洛阳济南淮南淮安深圳温州湖州湘潭漯河玉林石家庄石家庄市福州秦皇岛纽伦堡纽约绍兴罗奥尔凯埃罗拉赫美国伊利诺斯芝加哥芒廷维尤芝加哥苏州莫斯科衡水衡阳衢州西宁西安西安市贵港运城邯郸郑州重庆钱德勒长春长沙长治阿姆斯特丹随州青岛驻马店黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2036) PDF downloads(160) Cited by(36)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint