Volume 7 Issue 6
Feb.  2019
Turn off MathJax
Article Contents
Gao Jingkun, Deng Bin, Qin Yuliang, Wang Hongqiang, Li Xiang. Near-field 3D SAR Imaging Techniques Using a Scanning MIMO Array[J]. Journal of Radars, 2018, 7(6): 676-684. doi: 10.12000/JR18102
Citation: Gao Jingkun, Deng Bin, Qin Yuliang, Wang Hongqiang, Li Xiang. Near-field 3D SAR Imaging Techniques Using a Scanning MIMO Array[J]. Journal of Radars, 2018, 7(6): 676-684. doi: 10.12000/JR18102

Near-field 3D SAR Imaging Techniques Using a Scanning MIMO Array

DOI: 10.12000/JR18102
Funds:  The National Natural Science Foundation of China (61871386, 61701513, 61571011)
  • Received Date: 2018-11-28
  • Rev Recd Date: 2018-12-16
  • Publish Date: 2018-12-28
  • Near-field 3-D imaging based on a scanning array is an important application of Synthetic Aperture Radar (SAR) 3-D imaging technology for civil use. Compared with Single-Input-Single-Output (SISO) arrays, a Multi-Input-Multi-Output (MIMO) scanning system is a special imaging method characterized by high imaging quality, high array efficiency, loose requirements for antenna spacing and low cost. In this paper, two imaging regimes, namely, MIMO-planar scanning and MIMO cylindrical scanning, are described in terms of signal models, imaging algorithms, experimental systems, and imaging results. The results show the great application potential of the imaging technology in various scenarios.

     

  • loading
  • [1]
    吴一戎, 洪文, 张冰尘, 等. 稀疏微波成像研究进展(科普类)[J]. 雷达学报, 2014, 3(4): 383–396. DOI: 10.3724/SP.J.1300.2014.14105

    Wu Yi-rong, Hong Wen, Zhang Bing-chen, et al. Current developments of sparse microwave imaging[J]. Journal of Radars, 2014, 3(4): 383–396. DOI: 10.3724/SP.J.1300.2014.14105
    [2]
    Bi H, Liu J G, Zhang B C, et al. Baseline distribution optimization and missing data completion in wavelet-based CS-TomoSAR[J]. Science China Information Sciences, 2018, 61(4): 042302. DOI: 10.1007/s11432-016-9068-y
    [3]
    Bao Q, Peng X M, Wang Z R, et al. DLSLA 3-D SAR imaging based on reweighted gridless sparse recovery method[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 841–845. DOI: 10.1109/LGRS.2016.2550057
    [4]
    谭维贤, 洪文, 王彦平, 等. 基于波数域积分的人体表面微波三维成像算法研究[J]. 电子与信息学报, 2009, 31(11): 2541–2545. DOI: 10.3724/SP.J.1146.2008.01671

    Tan Wei-xian, Hong Wen, Wang Yan-ping, et al. Three-dimensional microwave imaging algorithm for the surface of the human body based on wavenumber domain integration[J]. Journal of Electronics&Information Technology, 2009, 31(11): 2541–2545. DOI: 10.3724/SP.J.1146.2008.01671
    [5]
    Qi Y L, Wang Y P, Peng X M, et al. Application of optimized sparse antenna array in near range 3D microwave imaging[J]. IEICE Transactions on Communications, 2013, E96.B(10): 2542–2552.
    [6]
    徐枫, 朱莉, 刘敏. 近程毫米波全息成像技术发展综述[J]. 微波学报, 2017, 33(S1): 289–294

    Xu Feng, Zhu Li, and Liu Min. Reviews of short range millimeter wave holographic imaging technology[J]. Journal of Microwaves, 2017, 33(S1): 289–294
    [7]
    王武, 陆必应, 孙鑫, 等. 基于RMA的三维成像与二维MIMO阵设计[J]. 现代雷达, 2016, 38(2): 38–42, 65. DOI: 10.16592/j.cnki.1004-7859.2016.02.009

    Wang Wu, Lu Bi-ying, Sun Xin, et al. 3-D imaging and 2-D MIMO arrays design based on range migration algorithm[J]. Modern Radar, 2016, 38(2): 38–42, 65. DOI: 10.16592/j.cnki.1004-7859.2016.02.009
    [8]
    乔灵博, 王迎新, 赵自然, 等. 主动式近距离太赫兹人体安检技术分析[J]. 微波学报, 2015, 31(4): 93–96. DOI: 10.14183/j.cnki.1005-6122.201504019

    Qiao Ling-bo, Wang Ying-xin, Zhao Zi-ran, et al. Analysis of active near-field terahertz imaging for personnel surveillance[J]. Journal of Microwaves, 2015, 31(4): 93–96. DOI: 10.14183/j.cnki.1005-6122.201504019
    [9]
    年丰, 温鑫, 杨于杰, 等. 近场C-SAR成像系统关键技术研究[J]. 现代防御技术, 2012, 40(6): 1–4, 18. DOI: 10.3969/j.issn.1009-086x.2012.06.001

    Nian Feng, Wen Xin, Yang Yu-jie, et al. Key technologies of near field C-SAR imaging system[J]. Modern Defense Technology, 2012, 40(6): 1–4, 18. DOI: 10.3969/j.issn.1009-086x.2012.06.001
    [10]
    王子野, 乔灵博, 王迎新, 等. 高分辨力亚毫米波全息成像系统[J]. 太赫兹科学与电子信息学报, 2016, 14(6): 833–837. DOI: 10.11805/TKYDA201606.0833

    Wang Zi-ye, Qiao Ling-bo, Wang Ying-xin, et al. Wide-band three-dimensional submillimeter-wave holographic imaging system[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(6): 833–837. DOI: 10.11805/TKYDA201606.0833
    [11]
    Farhat N H and Guard W R. Millimeter wave holographic imaging of concealed weapons[J]. Proceedings of the IEEE, 1971, 59(9): 1383–1384. DOI: 10.1109/PROC.1971.8441
    [12]
    朱莉, 李兴国, 王本庆. 近程毫米波全息成像算法[J]. 系统工程与电子技术, 2011, 33(12): 2577–2581. DOI: 10.3969/j.issn.1001-506X.2011.12.02

    Zhu Li, Li Xing-guo, and Wang Ben-qing. Short-range millimeter wave holographic imaging algorithm[J]. Systems Engineering and Electronics, 2011, 33(12): 2577–2581. DOI: 10.3969/j.issn.1001-506X.2011.12.02
    [13]
    赵磊, 黄昆, 郝鑫, 等. 近场雷达成像非均匀稀疏阵设计[J]. 太赫兹科学与电子信息学报, 2017, 15(5): 707–710. DOI: 10.11805/TKYDA201705.0707

    Zhao Lei, Huang Kun, Hao Xin, et al. Non-uniform sparse array design in near field radar imaging[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(5): 707–710. DOI: 10.11805/TKYDA201705.0707
    [14]
    吴世有, 高航, 李超, 等. 太赫兹MIMO弧形阵列方位向成像算法研究[J]. 电子与信息学报, 2018, 40(4): 860–866. DOI: 10.11999/JEIT170630

    Wu Shi-you, Gao Hang, Li Chao, et al. Research on MIMO THz azimuth imaging algorithm based on arc antenna array[J]. Journal of Electronics&Information Technology, 2018, 40(4): 860–866. DOI: 10.11999/JEIT170630
    [15]
    杨啸宇, 高敬坤, 邓彬, 等. 基于GPU的毫米波雷达近场阵列成像技术研究[J]. 电子测量技术, 2018, 41(11): 15–19

    Yang Xiao-yu, Gao Jing-kun, Deng Bin, et al. Research on near field array imaging in the millimeter band based on GPU[J]. Electronic Measurement Technology, 2018, 41(11): 15–19
    [16]
    Zhang Y, Deng B, Yang Q, et al. Near-field three-dimensional planar millimeter-wave holographic imaging by using frequency scaling algorithm[J]. Sensors, 2017, 17: 2438. DOI: 10.3390/s17102438
    [17]
    Moulder W F, Krieger J D, Majewski J J, et al.. Development of a high-throughput microwave imaging system for concealed weapons detection[C]. Proceedings of 2016 IEEE International Symposium on Phased Array Systems and Technology, Waltham, MA, USA, 2016: 1–6. DOI: 101109/ARRAY.2016.7832573.
    [18]
    Zhuge X and Yarovoy A G. A sparse aperture MIMO-SAR-Based UWB imaging system for concealed weapon detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 509–518. DOI: 10.1109/TGRS.2010.2053038
    [19]
    Gumbmann F and Schmidt L P. Millimeter-wave imaging with optimized sparse periodic array for short-range applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3629–3638. DOI: 10.1109/TGRS.2011.2164616
    [20]
    Sheen D, McMakin D, and Hall T. Near-field three-dimensional radar imaging techniques and applications[J]. Applied Optics, 2010, 49(19): E83–E93. DOI: 10.1364/AO.49.000E83
    [21]
    Sheen D M, McMakin D L, and Hall T E. Three-dimensional millimeter-wave imaging for concealed weapon detection[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(9): 1581–1592. DOI: 10.1109/22.942570
    [22]
    Zhuge X and Yarovoy A G. Three-dimensional near-field MIMO array imaging using range migration techniques[J]. IEEE Transactions on Image Processing, 2012, 21(6): 3026–3033. DOI: 10.1109/TIP.2012.2188036
    [23]
    王武. 近场MIMO雷达三维成像技术[D]. [硕士论文], 国防科学技术大学, 2015.

    Wang Wu. 3D Near-field imaging using MIMO radar[D]. [Master dissertation], National University of Defense Technology, 2015.
    [24]
    Ahmed S S, Genghammer A, Schiessl A, et al. Fully electronic E-band personnel imager of 2 m2 aperture based on a multistatic architecture[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1): 651–657. DOI: 10.1109/TMTT.2012.2228221
    [25]
    Ahmed S S, Schiessl A, Gumbmann F, et al. Advanced microwave imaging[J]. IEEE Microwave Magazine, 2012, 13(6): 26–43. DOI: 10.1109/MMM.2012.2205772
    [26]
    Tan K, Wu S Y, Wang Y C, et al. On sparse MIMO planar array topology optimization for UWB near-field high-resolution imaging[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 989–994. DOI: 10.1109/TAP.2016.2632626
    [27]
    Baccouche B, Agostini P, Mohammadzadeh S, et al. 3D terahertz imaging with sparse multistatic line arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 8501411. DOI: 10.1109/JSTQE.2017.2673552
    [28]
    Gao J K, Qin Y L, Deng B, et al. Novel efficient 3D short-range imaging algorithms for a scanning 1D-MIMO array[J]. IEEE Transactions on Image Processing, 2018, 27(7): 3631–3643. DOI: 10.1109/TIP.2018.2821925
    [29]
    Gao J K, Deng B, Qin Y L, et al. An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(11): 5065–5074. DOI: 1109/TMTT.2018.2859269
    [30]
    Gao J K, Qin Y L, Deng B, et al. Terahertz wide-angle imaging and analysis on plane-wave criteria based on inverse synthetic aperture techniques[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2016, 37(4): 373–393. DOI: 10.1007/s10762-016-0249-x
    [31]
    Vaupel T and Eibert T F. Comparison and application of near-field ISAR imaging techniques for far-field Radar cross section determination[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 144–151. DOI: 10.1109/TAP.2005.861549
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(5086) PDF downloads(509) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint