Volume 8 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
SHI Jun, QUE Yujia, ZHOU Zenan, et al. Near-field millimeter wave 3D imaging and object detection method[J]. Journal of Radars, 2019, 8(5): 578–588. doi: 10.12000/JR18089
Citation: SHI Jun, QUE Yujia, ZHOU Zenan, et al. Near-field millimeter wave 3D imaging and object detection method[J]. Journal of Radars, 2019, 8(5): 578–588. doi: 10.12000/JR18089

Near-field Millimeter Wave 3D Imaging and Object Detection Method

DOI: 10.12000/JR18089
Funds:  The National Natural Science Foundation of China (61671113)
More Information
  • Corresponding author: SHI Jun, shijun@uestc.edu.cn
  • Received Date: 2018-10-22
  • Rev Recd Date: 2019-07-02
  • Available Online: 2019-08-23
  • Publish Date: 2019-10-01
  • Active mm-wave linear-array 3D imaging system has become one of the active research areas in the field of imaging for human security. In this paper, the operating mode, signal model, and imaging algorithm are introduced. Deep learning algorithms, including the Convolutional Neural Network (CNN) with heat map and You Only Look Once (YOLO) network, were used for the object detection of human security image. The results show that the method based on heat map and YOLO can both detect foreign objects. We find that the CNN with heat map has a simple network construction and can be easily trained, but the detection process needs to traverse the whole image, which is relatively time-consuming, and the size of the detection region cannot adapt to the objects. On the contrary, though with a relatively complex construction, YOLO network has advantages in terms of detection efficiency and accuracy. Furthermore, the size of the detection region can adapt to the objects, which is more suitable for the human security imaging application.

     

  • loading
  • [1]
    CURRIE N C, DEMMA F J, FERRIS D D JR, et al. ARPA/NIJ/Rome laboratory concealed weapon detection program: An overview[C]. Proceedings of SPIE 2755, Signal Processing, Sensor Fusion, and Target Recognition V, Orlando, USA, 1996: 492–502.
    [2]
    FARHAT N H and GUARD W R. Millimeter wave holographic imaging of concealed weapons[J]. Proceedings of the IEEE, 1971, 59(9): 1383–1384. doi: 10.1109/PROC.1971.8441
    [3]
    GONZALEZ-VALDES B, ALLAN G, RODRIGUEZ-VAQUEIRO Y, et al. Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(4): 1716–1722. doi: 10.1109/TAP.2013.2290801
    [4]
    成彬彬, 李慧萍, 安健飞, 等. 太赫兹成像技术在站开式安检中的应用[J]. 太赫兹科学与电子信息学报, 2015, 13(6): 843–848. doi: 10.11805/TKYDA201506.0843

    CHENG Binbin, LI Huiping, AN Jianfei, et al. Application of terahertz imaging in standoff security inspection[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(6): 843–848. doi: 10.11805/TKYDA201506.0843
    [5]
    温鑫, 黄培康, 年丰, 等. 主动式毫米波近距离圆柱扫描三维成像系统[J]. 系统工程与电子技术, 2014, 36(6): 1044–1049. doi: 10.3969/j.issn.1001-506X.2014.06.05

    WEN Xin, HUANG Peikang, NIAN Feng, et al. Active millimeter-wave near-field cylindrical scanning three-dimensional imaging system[J]. Systems Engineering and Electronics, 2014, 36(6): 1044–1049. doi: 10.3969/j.issn.1001-506X.2014.06.05
    [6]
    APPLEBY R and WALLACE H B. Standoff detection of weapons and contraband in the 100 GHz to 1 THz region[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 2944–2956. doi: 10.1109/TAP.2007.908543
    [7]
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893.
    [8]
    AHONEN T, HADID A, and PIETIKAINEN M. Face description with local binary patterns: Application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037–2041. doi: 10.1109/TPAMI.2006.244
    [9]
    VIOLA P and JONES M. Rapid object detection using a boosted cascade of simple features[C]. Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001: I-511–I-518. doi: 10.1109/CVPR.2001.990517.
    [10]
    Kelly E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745
    [11]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    [12]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv: 1409.1556, 2014.
    [13]
    GIRSHICK R. Fast R-CNN[C]. Proceedings of 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    [14]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    [15]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [16]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [17]
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    [18]
    GOMEZ-MAQUEDA I, ALMOROX-GONZALEZ P, CALLEJERO-ANDRES C, et al. A millimeter-wave imager using an illuminating source[J]. IEEE Microwave Magazine, 2013, 14(4): 132–138. doi: 10.1109/MMM.2013.2248652
    [19]
    师君. 双基地SAR与线阵SAR原理及成像技术研究[D]. [博士论文], 电子科技大学, 2009.

    SHI Jun. Research on principles and imaging techniques of bistatic SAR & LASAR[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2009.
    [20]
    ROTHE R, GUILLAUMIN M, and VAN GOOL L. Non-maximum suppression for object detection by passing messages between windows[C]. Proceedings of the 12th Asian Conference on Computer Vision, Singapore, 2014: 290–306.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3832) PDF downloads(447) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint