YAO Yu, LI Zeqing, FAN Wen, et al. Spectrally compatible waveform design for MIMO radar based on ABSUM method[J]. Journal of Radars, 2022, 11(4): 543–556. doi: 10.12000/JR22138
Citation: YAO Yu, LI Zeqing, FAN Wen, et al. Spectrally compatible waveform design for MIMO radar based on ABSUM method[J]. Journal of Radars, 2022, 11(4): 543–556. doi: 10.12000/JR22138

Spectrally Compatible Waveform Design for MIMO Radar Based on ABSUM Method

DOI: 10.12000/JR22138 CSTR: 32380.14.JR22138
Funds:  The National Natural Science Foundation of China (61761019)
More Information
  • Corresponding author: YAO Yu, yaoyu@ecjtu.edu.cn
  • Received Date: 2022-07-07
  • Rev Recd Date: 2022-08-15
  • Available Online: 2022-08-16
  • Publish Date: 2022-08-26
  • This paper proposes a joint design method to optimize the transmit waveforms and receive filter bank in Multiple-Input Multiple-Output (MIMO) structure ensuring spectral compatibility with the surrounding communication service network. Considering the signal-dependent clutter interference, under the constraints of transmission energy, waveform similarity and spectrum compatibility, the formulated optimization problem of the output Signal-to-Interference-plus-Noise Ratio (SINR) maximization is NP-hard. Toward this end, an auxiliary variable is first introduced to modify the original problem, and then a primal-dual algorithm based on the Alternating Block Successive Upper-bound Minimization (ABSUM) method is developed to deal with the resulting problem. Furthermore, an interior point method is used to handle the quadratic programming problem involved in each update procedure of the devised ABSUM method. Finally, numerical simulations are performed to demonstrate the superiority of the proposed method over state-of-the-art methods in terms of the optimized SINR, beampattern, computational complexity and ambiguity properties.

     

  • [1]
    LI Jian and STOICA P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106–114. doi: 10.1109/MSP.2007.904812
    [2]
    YU Xianxiang, CUI Guolong, YANG Jing, et al. MIMO radar transmit-receive design for moving target detection in signal-dependent clutter[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 522–536. doi: 10.1109/TVT.2019.2951399
    [3]
    崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537–557. doi: 10.12000/JR19072

    CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072
    [4]
    AUBRY A, CAROTENUTO V, DE MAIO A, et al. Optimization theory-based radar waveform design for spectrally dense environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(12): 14–25. doi: 10.1109/MAES.2016.150216
    [5]
    STINCO P, GRECO M, GINI F, et al. Cognitive radars in spectrally dense environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 20–27. doi: 10.1109/MAES.2016.150193
    [6]
    AUBRY A, DE MAIO A, GOVONI M A, et al. On the design of multi-spectrally constrained constant modulus radar signals[J]. IEEE Transactions on Signal Processing, 2020, 68: 2231–2243. doi: 10.1109/TSP.2020.2983642
    [7]
    YAO Yu, WU Lenan, and LIU Haitao. Robust transceiver design in the presence of eclipsing loss for spectrally dense environments[J]. IEEE Systems Journal, 2021, 15(3): 4334–4345. doi: 10.1109/JSYST.2020.3024531
    [8]
    YAO Yu, LIU Haitao, MIAO Pu, et al. MIMO radar design for extended target detection in a spectrally crowded environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2021.
    [9]
    YAO Yu, LIU Haitao, and WU Lenan. Robust transmit waveform and receive filter design in the presence of eclipsing loss and signal-dependent interference[J]. Signal Processing, 2021, 181: 107901. doi: 10.1016/j.sigpro.2020.107901
    [10]
    CHEN Chunyang and VAIDYANATHAN P. MIMO radar waveform optimization with prior information of the extended target and clutter[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3533–3544. doi: 10.1109/TSP.2009.2021632
    [11]
    CUI Guoling, YU Xianxiang, CAROTENUTO V, et al. Space-time transmit code and receive filter design for colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2017, 65(5): 1116–1129. doi: 10.1109/TSP.2016.2633242
    [12]
    LIANG Junli, STOICA P, JING Yang, et al. Phase retrieval via the alternating direction method of multipliers[J]. IEEE Signal Processing Letters, 2018, 25(1): 5–9. doi: 10.1109/lsp.2017.2767826
    [13]
    ZHAO Licheng and PALOMAR D P. Maximin joint optimization of transmitting code and receiving filter in radar and communications[J]. IEEE Transactions on Signal Processing, 2017, 65(4): 850–863. doi: 10.1109/tsp.2016.2625267
    [14]
    付月, 崔国龙, 余显祥. 信号相关杂波背景下稳健的恒模序列与接收滤波器设计方法[J]. 雷达学报, 2017, 6(3): 292–299. doi: 10.12000/JR16158

    FU Yue, CUI Guolong, and YU Xianxiang. Robust design of constant modulus sequence and receiver filter in the presence of signal-dependent clutter[J]. Journal of Radars, 2017, 6(3): 292–299. doi: 10.12000/JR16158
    [15]
    AUBRY A, DE MAIO A, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1138–1152. doi: 10.1109/TAES.2014.120731
    [16]
    WU Linlong, BABU P, and PALOMA D P. Transmit waveform/receive filter design for MIMO radar with multiple waveform constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(6): 1526–1540. doi: 10.1109/tsp.2017.2787115
    [17]
    TANG Bo, LI Jian, and LIANG Junli. Alternating direction method of multipliers for radar waveform design in spectrally crowded environments[J]. Signal Processing, 2018, 142: 398–402. doi: 10.1016/j.sigpro.2017.08.003
    [18]
    FAN Wen, LIANG Junli, LU Guangshan, et al. Spectrally-agile waveform design for wideband MIMO radar transmit beampattern synthesis via majorization-ADMM[J]. IEEE Transactions on Signal Processing, 2021, 69: 1563–1578. doi: 10.1109/TSP.2021.3052997
    [19]
    AUBRY A, DE MAIO A, FARINA A, et al. Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 93–117. doi: 10.1109/TAES.2013.6404093
    [20]
    ALDAYEL O, MONGA V, and RANGASWAMY M. Successive QCQP refinement for MIMO radar waveform design under practical constraints[J]. IEEE Transactions on Signal Processing, 2016, 64(14): 3760–3774. doi: 10.1109/TSP.2016.2552501
    [21]
    YANG Jing, AUBRY A, DE MAIO A, et al. Multi-spectrally constrained transceiver design against signal-dependent interference[J]. IEEE Transactions on Signal Processing, 2022, 70: 1320–1332. doi: 10.1109/TSP.2022.3144953
    [22]
    SUN Ying, BABU P, and PALOMAR D P. Majorization-minimization algorithms in signal processing, communications, and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 794–816. doi: 10.1109/TSP.2016.2601299
    [23]
    TANG Bo and TANG Jun. Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707–4722. doi: 10.1109/TSP.2016.2569431
    [24]
    CHENG Ziyang, HE Zishu, LIAO Bin, et al. MIMO radar waveform design with papr and similarity constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 968–981. doi: 10.1109/TSP.2017.2780052
    [25]
    O’ROURKE S M, SETLUR P, RANGASWAMY M, et al. Quadratic semidefinite programming for waveform-constrained joint filter-signal design in STAP[J]. IEEE Transactions on Signal Processing, 2020, 68: 1744–1759. doi: 10.1109/TSP.2020.2977271
    [26]
    QIAN Junhui, LOPS M, ZHENG Le, et al. Joint system design for coexistence of MIMO radar and mimo communication[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3504–3519. doi: 10.1109/TSP.2018.2831624
    [27]
    CHENG Xu, AUBRY A, CIUONZO D, et al. Robust waveform and filter bank design of polarimetric radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 370–384. doi: 10.1109/TAES.2017.2650619
    [28]
    HONG Mingyi, CHANG T H, WANG Xiangfeng, et al. A block successive upper-bound minimization method of multipliers for linearly constrained convex optimization[J]. Mathematics of Operations Research, 2020, 45(3): 833–861. doi: 10.1287/moor.2019.1010
    [29]
    LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019
    [30]
    RAZAVIYAYN M, HONG Mingyi, and LUO Zhiquan. A unified convergence analysis of block successive minimization methods for nonsmooth optimization[J]. SIAM Journal on Optimization, 2013, 23(2): 1126–1153. doi: 10.1137/120891009
    [31]
    HONG Mingyi, RAZAVIYAYN M, LUO Zhiquan, et al. A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing[J]. IEEE Signal Processing Magazine, 2016, 33(1): 57–77. doi: 10.1109/MSP.2015.2481563
    [32]
    GERSHMAN A B, SIDIROPOULOS N D, SHAHBAZPANAHI S, et al. Convex optimization-based beamforming[J]. IEEE Signal Processing Magazine, 2010, 27(3): 62–75. doi: 10.1109/MSP.2010.936015
    [33]
    CUI Guolong, LI Hongbin, and RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2013, 62(2): 343–353. doi: 10.1109/TSP.2013.2288086
    [34]
    BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
    [35]
    王璐璐. 基于信息论的自适应波形设计[D]. [博士论文], 国防科学技术大学, 2015.

    WANG Lulu. Adaptive waveform design based on information theory[D]. [Ph. D. dissertation], National University of Defense Technology, 2015.
    [36]
    张钰. 基于最大互信息准则的认知雷达波形优化算法研究[D]. [硕士论文], 西安电子科技大学, 2012.

    ZHANG Yu. Study on the waveform design algorithm for cognitive radar based on maximum mutual information rule[D]. [Master dissertation], Xidian University, 2012.
    [37]
    TANG Bo and LI Jian. Spectrally constrained MIMO radar waveform design based on mutual information[J]. IEEE Transactions on Signal Processing, 2019, 67(3): 821–834. doi: 10.1109/TSP.2018.2887186
    [38]
    GRANT M and BOYD S. CVX package[EB/OL]. http://www.cvxr.com/cvx.r, 2012.
    [39]
    YU Xianxiang, ALHUJAILI K, CUI Guolong, et al. MIMO radar waveform design in the presence of multiple targets and practical constraints[J]. IEEE Transactions on Signal Processing, 2020, 68: 1974–1989. doi: 10.1109/TSP.2020.2979602
  • Relative Articles

    [1]LIU Fan, LU Shihang, CHEN Zihao. MIMO-ISAC Precoding Design Toward Random Signals[J]. Journal of Radars. doi: 10.12000/JR25019
    [2]WAN Fuhai, XU Jingwei, LIAO Guisheng, WANG Weiwei. Space-time Two-dimensional Clutter Suppression Method Based on Subarray Beam Pattern Design[J]. Journal of Radars, 2024, 13(5): 1061-1072. doi: 10.12000/JR24064
    [3]YANG Zheng, CHENG Yongqiang, WU Hao, LI Xiang, WANG Hongqiang. Subband Information Geometry Detection Method Based on Orthogonal Projection for Weak Radar Targets[J]. Journal of Radars, 2023, 12(4): 776-792. doi: 10.12000/JR23079
    [4]SHI Chenguang, DONG Jing, ZHOU Jianjiang. Joint Transmit Power and Dwell Time Allocation for Multitarget Tracking in Radar Networks under Spectral Coexistence[J]. Journal of Radars, 2023, 12(3): 590-601. doi: 10.12000/JR22146
    [5]YUE Yaxing, LI Tianyu, ZHOU Chengwei, YUAN Xin, SHI Zhiguo. Research Progress and Prospect of Sparse Diversely Polarized Array Design[J]. Journal of Radars, 2023, 12(2): 312-331. doi: 10.12000/JR22206
    [6]YU Xianxiang, LU Qinghui, YANG Jing, SHA Minghui, CUI Guolong, KONG Lingjiang. Frequency Domain Cooperative Waveform Design Method for Short Baseline Transceiver[J]. Journal of Radars, 2022, 11(2): 227-239. doi: 10.12000/JR22014
    [7]WAN Huan, YU Xianxiang, QUAN Zhi, LIAO Bin. Constant Modulus Waveform Design for Low-resolution Quantization MIMO Radar Based on an Alternating Direction Penalty Method[J]. Journal of Radars, 2022, 11(4): 557-569. doi: 10.12000/JR22072
    [8]LIU Fan, YUAN Weijie, YUAN Jinhong, ZHANG J. Andrew, FEI Zesong, ZHOU Jianming. Radar-communication Spectrum Sharing and Integration: Overview and Prospect[J]. Journal of Radars, 2021, 10(3): 467-484. doi: 10.12000/JR20113
    [9]DENG Likang, ZHANG Shuanghui, ZHANG Chi, LIU Yongxiang. A Multiple-Input Multiple-Output Inverse Synthetic Aperture Radar Imaging Method Based on Multidimensional Alternating Direction Method of Multipliers[J]. Journal of Radars, 2021, 10(3): 416-431. doi: 10.12000/JR20132
    [10]ZHENG Tong, JIANG Libing, WANG Zhuang. Three-dimensional Multiple-Input Multiple-Output Radar Imaging Method Based on Integration of Multi-snapshot Images[J]. Journal of Radars, 2020, 9(4): 739-752. doi: 10.12000/JR19069
    [11]ZHENG Guimei, SONG Yuwei, HU Guoping, LI Binbin, ZHANG Dong. Height Measurement for Meter-wave MIMO Radar Based on Block Orthogonal Matching Pursuit Preprocessing[J]. Journal of Radars, 2020, 9(5): 908-915. doi: 10.12000/JR20042
    [12]HAN Jinwang, ZHANG Zijing, LIU Jun, ZHAO Yongbo. Adaptive Bayesian Detection for MIMO Radar in Gaussian Clutter[J]. Journal of Radars, 2019, 8(4): 501-509. doi: 10.12000/JR18090
    [13]ZENG Zheng, ZHANG Fubo, CHEN Longyong, BU Xiangxi, ZHOU Siyan. A Two-dimensional Mixed Baseline Method Based on MIMO-SAR for Countering Deceptive Jamming[J]. Journal of Radars, 2019, 8(1): 90-99. doi: 10.12000/JR18118
    [14]Gong Pengcheng, Liu Gang, Huang He, Wang Wenqin. Multidimensional Parameter Estimation Method Based on Sparse Iteration in FDA-MIMO Radar[J]. Journal of Radars, 2018, 7(2): 194-201. doi: 10.12000/JR16121
    [15]Wang Yuzhuo, Zhu Shengqi, Xu Jingwei. A Range-ambiguous Clutter Suppression Method for MIMO Bistatic Airborne Radar[J]. Journal of Radars, 2018, 7(2): 202-211. doi: 10.12000/JR18016
    [16]Lu Yanxi, He Zishu, Cheng Ziyang, Liu Shuangli. Joint Selection of Transmitters and Receivers in Distributed Multi-input Multi-output Radar Network for Multiple Targets Tracking[J]. Journal of Radars, 2017, 6(1): 73-80. doi: 10.12000/JR16106
    [17]Gu Wenkun, Wang Dangwei, Ma Xiaoyan. Distributed MIMO-ISAR Sub-image Fusion Method[J]. Journal of Radars, 2017, 6(1): 90-97. doi: 10.12000/JR16042
    [18]Guo Yiduo, Gong Jian, Huang Darong, Jin Hubing. Unified Theoretical Frame of a Joint Transmitter-Receiver Reduced Dimensional STAP Method for an Airborne MIMO Radar[J]. Journal of Radars, 2016, 5(5): 517-525. doi: 10.12000/JR16108
    [19]Wang Hua-bin, Xu Mu, Wang Cheng, Zhao Qing-quan. False Target Discrimination of Air Surveillance Radar Based on Track Velocity Modification and Frequency Spectrum Analysis[J]. Journal of Radars, 2013, 2(3): 382-388. doi: 10.3724/SP.J.1300.2013.13045
    [20]Li Wei, Wang Xing-liang, Zou Kun, Xu Yi-meng, Zhang Qun. Anti Deceptive Jamming for MIMO Radar Based on Data Fusion and Notch Filtering (in English)[J]. Journal of Radars, 2012, 1(3): 246-252. doi: 10.3724/SP.J.1300.2012.20060
  • Cited by

    Periodical cited type(1)

    1. 王健,时晨光,周建江,汪飞. 频谱共存下基于OFDM-LFM的机载组网雷达射频隐身波形优化算法. 战术导弹技术. 2024(05): 111-121 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.4 %FULLTEXT: 19.4 %META: 75.0 %META: 75.0 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.1 %其他: 6.1 %其他: 1.9 %其他: 1.9 %Absecon: 0.3 %Absecon: 0.3 %Central District: 0.1 %Central District: 0.1 %China: 0.1 %China: 0.1 %Matawan: 0.2 %Matawan: 0.2 %[]: 0.7 %[]: 0.7 %上海: 0.6 %上海: 0.6 %东京都: 0.1 %东京都: 0.1 %东莞: 0.1 %东莞: 0.1 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %丹东: 0.1 %丹东: 0.1 %九江: 0.1 %九江: 0.1 %亚特兰大: 0.2 %亚特兰大: 0.2 %休斯敦: 0.2 %休斯敦: 0.2 %伦敦: 0.1 %伦敦: 0.1 %佛山: 0.3 %佛山: 0.3 %信阳: 0.1 %信阳: 0.1 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.1 %内江: 0.1 %凤凰城: 0.2 %凤凰城: 0.2 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 6.5 %北京: 6.5 %十堰: 0.1 %十堰: 0.1 %南京: 1.3 %南京: 1.3 %南充: 0.1 %南充: 0.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.7 %南昌: 0.7 %南通: 0.1 %南通: 0.1 %南阳: 0.1 %南阳: 0.1 %卡拉奇: 0.1 %卡拉奇: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %合肥: 0.4 %合肥: 0.4 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.9 %哈尔滨: 0.9 %哥伦布: 0.1 %哥伦布: 0.1 %商洛: 0.1 %商洛: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %圣安东尼奥: 0.4 %圣安东尼奥: 0.4 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %夏尔迦: 0.2 %夏尔迦: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.1 %天津: 0.1 %太原: 0.2 %太原: 0.2 %威海: 0.2 %威海: 0.2 %宁波: 0.1 %宁波: 0.1 %安康: 0.2 %安康: 0.2 %宜春: 0.1 %宜春: 0.1 %宣城: 0.1 %宣城: 0.1 %宿州: 0.1 %宿州: 0.1 %巴黎: 0.1 %巴黎: 0.1 %帕西帕尼-特洛伊希尔斯: 0.1 %帕西帕尼-特洛伊希尔斯: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.8 %广州: 0.8 %库比蒂诺: 0.6 %库比蒂诺: 0.6 %开封: 0.1 %开封: 0.1 %张家口: 1.0 %张家口: 1.0 %德里: 0.2 %德里: 0.2 %忻州: 0.1 %忻州: 0.1 %惠州: 0.3 %惠州: 0.3 %成都: 1.0 %成都: 1.0 %扬州: 0.1 %扬州: 0.1 %新竹: 0.1 %新竹: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 0.3 %杭州: 0.3 %桂林: 0.1 %桂林: 0.1 %梅州: 0.3 %梅州: 0.3 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %泰安: 0.1 %泰安: 0.1 %泰州: 0.1 %泰州: 0.1 %泰米尔纳德: 0.2 %泰米尔纳德: 0.2 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %海口: 0.1 %海口: 0.1 %淄博: 0.2 %淄博: 0.2 %淮南: 0.1 %淮南: 0.1 %淮安: 0.1 %淮安: 0.1 %深圳: 0.4 %深圳: 0.4 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.4 %漯河: 0.4 %潍坊: 0.1 %潍坊: 0.1 %濮阳: 0.1 %濮阳: 0.1 %烟台: 0.2 %烟台: 0.2 %焦作: 0.1 %焦作: 0.1 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.3 %福州: 0.3 %秦皇岛: 0.3 %秦皇岛: 0.3 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.3 %绵阳: 0.3 %罗奥尔凯埃: 0.2 %罗奥尔凯埃: 0.2 %芒廷维尤: 23.5 %芒廷维尤: 23.5 %芝加哥: 0.1 %芝加哥: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %萍乡: 0.1 %萍乡: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.6 %衡水: 0.6 %衡阳: 0.1 %衡阳: 0.1 %西宁: 34.6 %西宁: 34.6 %西安: 2.1 %西安: 2.1 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.3 %赣州: 0.3 %达州: 0.1 %达州: 0.1 %达拉斯: 0.1 %达拉斯: 0.1 %运城: 0.8 %运城: 0.8 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.4 %郑州: 0.4 %重庆: 0.3 %重庆: 0.3 %铁岭: 0.2 %铁岭: 0.2 %银川: 0.4 %银川: 0.4 %镇江: 0.1 %镇江: 0.1 %长沙: 0.3 %长沙: 0.3 %长治: 0.1 %长治: 0.1 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.1 %青岛: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他AbseconCentral DistrictChinaMatawan[]上海东京都东莞中卫临汾丹东九江亚特兰大休斯敦伦敦佛山信阳兰州兰辛内江凤凰城加利福尼亚州北京十堰南京南充南宁南昌南通南阳卡拉奇台北台州合肥呼和浩特哈尔滨哥伦布商洛嘉兴圣安东尼奥圣彼得堡夏尔迦大连天津太原威海宁波安康宜春宣城宿州巴黎帕西帕尼-特洛伊希尔斯平顶山广州库比蒂诺开封张家口德里忻州惠州成都扬州新竹无锡昆明晋城朝阳杭州桂林梅州武汉沈阳沧州泰安泰州泰米尔纳德洛阳济南海口淄博淮南淮安深圳湘潭漯河潍坊濮阳烟台焦作石家庄福州秦皇岛绍兴绵阳罗奥尔凯埃芒廷维尤芝加哥莫斯科萍乡葫芦岛衡水衡阳西宁西安诺沃克贵阳赣州达州达拉斯运城邯郸郑州重庆铁岭银川镇江长沙长治阳泉青岛香港特别行政区黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1342) PDF downloads(99) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint