Yang Qian, Wei Bing, Li Lin-qian, Ge De-biao. Preliminary Research on RCS Using DGTD[J]. Journal of Radars, 2015, 4(3): 361-366. doi: 10.12000/JR15052
Citation: YU Xianxiang, LU Qinghui, YANG Jing, et al. Frequency domain cooperative waveform design method for short baseline transceiver[J]. Journal of Radars, 2022, 11(2): 227–239. doi: 10.12000/JR22014

Frequency Domain Cooperative Waveform Design Method for Short Baseline Transceiver

DOI: 10.12000/JR22014
Funds:  The National Natural Science Foundation of China (U19B2017, 62101097), The Chang Jiang Scholars Program, China Postdoctoral Science Foundation (2020M680147, 2021T140096)
More Information
  • Corresponding author: CUI Guolong, cuiguolong@uestc.edu.cn
  • Received Date: 2022-01-15
  • Rev Recd Date: 2022-03-25
  • Available Online: 2022-03-30
  • Publish Date: 2022-04-19
  • Multinode transceiver division systems can cooperate across multiple domains, including space, time, frequency, and energy, through waveforms. Moreover, it can provide greater anti-interference degrees of freedom than that from a single radar. Through this paper, we propose a frequency domain cooperative waveform design method based on two short baseline transceiver separation systems to resist multi-mainlobe interference. First, a narrowband detection signal with a locally good autocorrelation level was optimized using the Majorization-Minimization-based Proximal Method of Multipliers (MM-PMM) algorithm. Then, according to the characteristics of the frequency hopping of the narrowband detection signal, the corresponding wideband signal with a null spectrum was optimized as the cover signal of a narrowband signal. Further, two transmitting nodes were used to transmit the narrowband and wideband signals. Finally, a signal processing method based on phase-coherent and nonphase-coherent joint accumulation, with known frequency agility was used to process the cooperative waveform in the frequency domain. Numerical simulation results demonstrated the convergence of the MM-PMM algorithm, principle of frequency domain cover, and effectiveness of the frequency domain cooperative waveform design method against multi-mainlobe interference.

     

  • [1]
    谢绍斌. 载波调制混沌雷达信号理论研究[D]. [博士论文], 电子科技大学, 2012.

    XIE Shaobin. Research on signal theory for carrier modulation chaotic radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2012.
    [2]
    张锡熊, 陈方林. 雷达抗干扰原理[M]. 北京: 科学出版社, 1981.

    ZHANG Xixiong and CHEN Fanglin. Principle of Radar Anti-Interference[M]. Beijing: Science Press, 1981.
    [3]
    杨娟. 雷达射频掩护的认知抗干扰技术研究[D]. [硕士论文], 西安电子科技大学, 2018.

    YANG Juan. Research on the cognitive anti-jamming technology of radar radio frequency-screen[D]. [Master dissertation], Xidian University, 2018.
    [4]
    胡祺勇, 谢军伟, 张浩为, 等. 掩护信号抗转发干扰技术研究[J]. 弹箭与制导学报, 2017, 37(4): 168–172. doi: 10.15892/j.cnki.djzdxb.2017.04.039

    HU Qiyong, XIE Junwei, ZHANG Haowei, et al. Study on anti repeat jamming technology of screen signal[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2017, 37(4): 168–172. doi: 10.15892/j.cnki.djzdxb.2017.04.039
    [5]
    金珊珊, 王春阳, 邱程, 等. 对抗应答式干扰的射频掩护脉冲设计[J]. 中国电子科学研究院学报, 2014, 9(4): 377–381. doi: 10.3969/j.issn.1673-5692.2014.04.010

    JIN Shanshan, WANG Chunyang, QIU Cheng, et al. Design of RF protecting signal for transponder jamming suppression[J]. Journal of CAEIT, 2014, 9(4): 377–381. doi: 10.3969/j.issn.1673-5692.2014.04.010
    [6]
    张昭建, 谢军伟, 杨春晓, 等. 掩护脉冲信号抗转发式欺骗干扰性能分析[J]. 弹箭与制导学报, 2016, 36(4): 149–152, 156. doi: 10.15892/j.cnki.djzdxb.2016.04.039

    ZHANG Zhaojian, XIE Junwei, YANG Chunxiao, et al. Performance analysis of screening pulse signal confronts to deception jamming[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2016, 36(4): 149–152, 156. doi: 10.15892/j.cnki.djzdxb.2016.04.039
    [7]
    周伟江, 王培强, 张进, 等. 雷达射频掩护信号分析及对抗方法研究[J]. 航天电子对抗, 2013, 29(5): 47–50. doi: 10.3969/j.issn.1673-2421.2013.05.014

    ZHOU Weijiang, WANG Peiqiang, ZHANG Jin, et al. Analysis and countermeasures of radar radio frequency-screen signal[J]. Aerospace Electronic Warfare, 2013, 29(5): 47–50. doi: 10.3969/j.issn.1673-2421.2013.05.014
    [8]
    蒋铁珍, 廖同庆. 分布式雷达抗主瓣干扰方法研究[J]. 中国电子科学研究院学报, 2015, 10(4): 389–394. doi: 10.3969/j.issn.1673-5692.2015.04.011

    JIANG Tiezhen and LIAO Tongqing. Research on anti-mainlobe jamming method of distributed radar based on LMS algorithm[J]. Journal of CAEIT, 2015, 10(4): 389–394. doi: 10.3969/j.issn.1673-5692.2015.04.011
    [9]
    付姣姣. 双站协同抗干扰技术研究[D]. [硕士论文], 南京理工大学, 2019.

    FU Jiaojiao. Research on cooperative interference interference technology of two stations[D]. [Master dissertation], Nanjing University of Science and Technology, 2019.
    [10]
    杨超, 蒋卫锋. 雷达有源诱饵设计考虑因素[J]. 舰船电子工程, 2016, 36(5): 81–82, 95. doi: 10.3969/j.issn.1672-9730.2016.05.021

    YANG Chao and JIANG Weifeng. Considerations for radar active decoy design[J]. Ship Electronic Engineering, 2016, 36(5): 81–82, 95. doi: 10.3969/j.issn.1672-9730.2016.05.021
    [11]
    CUI Guolong, YANG Jing, LU Shuping, et al. Dual-use unimodular sequence design via frequency nulling modulation[J]. IEEE Access, 2018, 6: 62470–62481. doi: 10.1109/ACCESS.2018.2876644
    [12]
    崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537–557. doi: 10.12000/JR19072

    CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072
    [13]
    BOHRA P and UNSER M. Continuous-domain signal reconstruction using L p-norm regularization[J]. IEEE Transactions on Signal Processing, 2020, 68: 4543–4554. doi: 10.1109/TSP.2020.3013781
    [14]
    SONG Junxiao, BABU P, and PALOMAR D P. Sequence design to minimize the weighted integrated and peak sidelobe levels[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2051–2064. doi: 10.1109/TSP.2015.2510982
    [15]
    FAN Wen, LIANG Junli, YU Guoyang, et al. MIMO radar waveform design for quasi-equiripple transmit beampattern synthesis via weighted L p-minimization[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3397–3411. doi: 10.1109/TSP.2019.2917871
    [16]
    FAN Wen, LIANG Junli, YU Guoyang, et al. Minimum local peak sidelobe level waveform design with correlation and/or spectral constraints[J]. Signal Processing, 2020, 171: 107450. doi: 10.1016/j.sigpro.2019.107450
    [17]
    DHINGRA N K, KHONG S Z, and JOVANOVIĆ M R. The proximal augmented lagrangian method for nonsmooth composite optimization[J]. IEEE Transactions on Automatic Control, 2019, 64(7): 2861–2868. doi: 10.1109/TAC.2018.2867589
    [18]
    BU Yi, YU Xianxiang, YANG Jing, et al. A new approach for design of constant modulus discrete phase radar waveform with low WISL[J]. Signal Processing, 2021, 187: 108145. doi: 10.1016/j.sigpro.2021.108145
    [19]
    TANG Bo and LIANG Junli. Efficient algorithms for synthesizing probing waveforms with desired spectral shapes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1174–1189. doi: 10.1109/TAES.2018.2876585
    [20]
    PATTON L K and RIGLING B D. Phase retrieval for radar waveform optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3287–3302. doi: 10.1109/TAES.2012.6324705
    [21]
    ROWE W, STOICA P, and LI Jian. Spectrally constrained waveform design [sp Tips&Tricks][J]. IEEE Signal Processing Magazine, 2014, 31(3): 157–162. doi: 10.1109/MSP.2014.2301792
    [22]
    张洋. 弹载环境下雷达抗干扰波形设计研究[D]. [硕士论文], 哈尔滨工业大学, 2019.

    ZHANG Yang. Research on anti-jamming waveform design of missile-borne radar[D]. [Master dissertation], Harbin Institute of Technology, 2019.
    [23]
    孟祥东, 夏德平. 脉冲间跳频波形的相参积累目标检测方法[J]. 现代雷达, 2022, 44(3): 70–75. doi: 10.16592/j.cnki.1004-7859.2022.03.012

    MENG Xiangdong and XIA Deping. Coherent integration methods for detecting targets in inter-pulse frequency hopping waveform[J]. Modern Radar, 2022, 44(3): 70–75. doi: 10.16592/j.cnki.1004-7859.2022.03.012
    [24]
    LU Qinghui, CUI Guolong, LIU Ruitao, et al. Wideband beampattern synthesis using single digital beamformer with integer time delay flters[J]. IEEE Transactions on Antennas and Propagation, in press.
    [25]
    彭德强. 线性调频信号和噪声调频信号性能对比分析[J]. 舰船电子对抗, 2021, 44(1): 22–26. doi: 10.16426/j.cnki.jcdzdk.2021.01.005

    PENG Deqiang. Analysis of the performance comparison between LFM signal and noise FM signal[J]. Shipboard Electronic Countermeasure, 2021, 44(1): 22–26. doi: 10.16426/j.cnki.jcdzdk.2021.01.005
    [26]
    金珊珊, 王春阳, 李欣. 灵巧干扰及其对抗技术综述[J]. 现代防御技术, 2014, 42(4): 131–135, 142. doi: 10.3969/j.issn.1009-086x.2014.04.022

    JIN Shanshan, WANG Chunyang, and LI Xin. Overview on smart noise jamming and countermeasures[J]. Modern Defense Technology, 2014, 42(4): 131–135, 142. doi: 10.3969/j.issn.1009-086x.2014.04.022
  • Relative Articles

    [1]LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043
    [2]YUAN Hang, HE Qifang, LUO Ying, WANG Zhihao, ZHANG Qun. Three-dimensional Micro-motion Parameters Extraction of Translational Rotating Targets Based on Vortex Electromagnetic Wave Radar[J]. Journal of Radars, 2023, 12(4): 804-816. doi: 10.12000/JR23065
    [3]GONG Zhihua, LI Kaiming, DUAN Pengwei, CHEN Chunjiang. Attitude and Orbital Coupled Modeling and Micro-Doppler Characteristics Analysis of the Projectile with Initial Disturbances[J]. Journal of Radars, 2023, 12(4): 793-803. doi: 10.12000/JR23026
    [4]DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037
    [5]WANG Yu, LIU Kang, WANG Jianqiu, WANG Hongqiang, CHENG Yongqiang. Rotational Doppler Detection of a Cone-shaped Target under the Illumination of a Vortex Electromagnetic Wave[J]. Journal of Radars, 2021, 10(5): 740-748. doi: 10.12000/JR21074
    [6]XU Shuwen, BAI Xiaohui, GUO Zixun, SHUI Penglang. Status and Prospects of Feature-based Detection Methods for Floating Targets on the Sea Surface (in English)[J]. Journal of Radars, 2020, 9(4): 684-714. doi: 10.12000/JR20084
    [7]CHEN Shichao, GAO Heting, LUO Feng. Target Detection in Sea Clutter Based on Combined Characteristics of Polarization[J]. Journal of Radars, 2020, 9(4): 664-673. doi: 10.12000/JR20072
    [8]DING Hao, LIU Ningbo, DONG Yunlong, CHEN Xiaolong, GUAN Jian. Overview and Prospects of Radar Sea Clutter Measurement Experiments[J]. Journal of Radars, 2019, 8(3): 281-302. doi: 10.12000/JR19006
    [9]ZUO Lei, CHAN Xiuxiu, LU Xiaofei, LI Ming. A Weak Target Detection Method in Sea Clutter Based on Joint Space-time-frequency Decomposition[J]. Journal of Radars, 2019, 8(3): 335-343. doi: 10.12000/JR19035
    [10]CHEN Shichao, LUO Feng, HU Chong, NIE Xueya. Small Target Detection in Sea Clutter Background Based on Tsallis Entropy of Doppler Spectrum[J]. Journal of Radars, 2019, 8(3): 344-354. doi: 10.12000/JR19012
    [11]He Qifang, Zhang Qun, Luo Ying, Li Kaiming. A Sinusoidal Frequency Modulation Fourier-Bessel Transform and its Application to Micro-Doppler Feature Extraction[J]. Journal of Radars, 2018, 7(5): 593-601. doi: 10.12000/JR17069
    [12]Hui Ye, Bai Xueru. RID Image Series-based High-resolution Three-dimensional Imaging of Micromotion Targets[J]. Journal of Radars, 2018, 7(5): 548-556. doi: 10.12000/JR18056
    [13]Su Ningyuan, Chen Xiaolong, Guan Jian, Mou Xiaoqian, Liu Ningbo. Detection and Classification of Maritime Target with Micro-motion Based on CNNs[J]. Journal of Radars, 2018, 7(5): 565-574. doi: 10.12000/JR18077
    [14]Zhang Qun, Hu Jian, Luo Ying, Chen Yijun. Research Progresses in Radar Feature Extraction, Imaging, and Recognition of Target with Micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547. doi: 10.12000/JR18049
    [15]Yang Qi, Deng Bin, Wang Hongqiang, Qin Yuliang. Advancements in Research on Micro-motion Feature Extraction in the Terahertz Region[J]. Journal of Radars, 2018, 7(1): 22-45. doi: 10.12000/JR17087
    [16]Ding Hao, Dong Yunlong, Liu Ningbo, Wang Guoqing, Guan Jian. Overview and Prospects of Research on Sea Clutter Property Cognition[J]. Journal of Radars, 2016, 5(5): 499-516. doi: 10.12000/JR16069
    [17]Feng Cun-qian, Li Jing-qing, He Si-san, Zhang Hao. Micro-Doppler Feature Extraction and Recognition Based on Netted Radar for Ballistic Targets[J]. Journal of Radars, 2015, 4(6): 609-620. doi: 10.12000/JR15084
    [18]Chen Xiao-long, Dong Yun-long, Li Xiu-you, Guan Jian. Modeling of Micromotion and Analysis of Properties of Rigid Marine Targets[J]. Journal of Radars, 2015, 4(6): 630-638. doi: 10.12000/JR15079
    [19]Yan Liang, Sun Pei-lin, Yi Lei, Han Ning, Tang Jun. Modeling of Compound Gaussian Sea Clutter Based on Inverse Gaussian Distribution[J]. Journal of Radars, 2013, 2(4): 461-465. doi: 10.3724/SP.J.1300.2013.13083
    [20]Luo Ying, Zhang Qun, Wang Guo-zheng, Guan Hua, Bai You-qing. Micro-motion Signature Extraction Method for Wideband Radar Based on Complex Image OMP Decomposition[J]. Journal of Radars, 2012, 1(4): 361-369. doi: 10.3724/SP.J.1300.2012.20065
  • Cited by

    Periodical cited type(4)

    1. 张倩,李宏博,张云,任航. 星载多发多收SAR多维编码波形设计与分析. 哈尔滨工业大学学报. 2022(11): 22-30 .
    2. 赵宝利,何华. 基于波达方向信号源数快速检测算法研究. 电子设计工程. 2020(18): 140-143 .
    3. 王文钦,陈慧,郑植,张顺生. 频控阵雷达技术及其应用研究进展. 雷达学报. 2018(02): 153-166 . 本站查看
    4. 叶恺,禹卫东,王伟. 基于矩阵束方法的星载MEB SAR俯仰向DBF处理方法. 电子与信息学报. 2018(11): 2659-2666 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040204060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.3 %FULLTEXT: 15.3 %META: 70.3 %META: 70.3 %PDF: 14.4 %PDF: 14.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.4 %其他: 14.4 %其他: 0.7 %其他: 0.7 %Central District: 0.0 %Central District: 0.0 %China: 1.0 %China: 1.0 %Fremont: 0.0 %Fremont: 0.0 %Kao-sung: 0.1 %Kao-sung: 0.1 %Korea Republic of: 0.1 %Korea Republic of: 0.1 %Luxembourg: 0.1 %Luxembourg: 0.1 %Mariano Comense: 0.1 %Mariano Comense: 0.1 %North Point: 0.1 %North Point: 0.1 %Poland: 0.1 %Poland: 0.1 %Research: 0.0 %Research: 0.0 %Richardson: 0.1 %Richardson: 0.1 %Romania: 0.1 %Romania: 0.1 %Turkey: 0.1 %Turkey: 0.1 %Tysons Corner: 0.1 %Tysons Corner: 0.1 %United States: 0.0 %United States: 0.0 %Wandsworth: 0.0 %Wandsworth: 0.0 %[]: 1.2 %[]: 1.2 %上海: 1.4 %上海: 1.4 %上海市: 0.0 %上海市: 0.0 %东爪哇: 0.2 %东爪哇: 0.2 %东莞: 0.2 %东莞: 0.2 %东营: 0.0 %东营: 0.0 %中卫: 0.0 %中卫: 0.0 %中山: 0.0 %中山: 0.0 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %九江: 0.0 %九江: 0.0 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.0 %佛山: 0.0 %信阳: 0.1 %信阳: 0.1 %六安: 0.1 %六安: 0.1 %包头: 0.0 %包头: 0.0 %北京: 12.4 %北京: 12.4 %北京市: 0.1 %北京市: 0.1 %十堰: 0.0 %十堰: 0.0 %南京: 2.4 %南京: 2.4 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.0 %南通: 0.0 %南阳: 0.1 %南阳: 0.1 %厦门: 0.0 %厦门: 0.0 %台北: 0.0 %台北: 0.0 %合肥: 0.4 %合肥: 0.4 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.7 %哈尔滨: 0.7 %哈尔滨市: 0.0 %哈尔滨市: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.4 %大连: 0.4 %天津: 0.8 %天津: 0.8 %威海: 0.0 %威海: 0.0 %安卡拉: 0.1 %安卡拉: 0.1 %安庆: 0.1 %安庆: 0.1 %宣城: 0.2 %宣城: 0.2 %巴中: 0.0 %巴中: 0.0 %常州: 0.2 %常州: 0.2 %广州: 1.0 %广州: 1.0 %广西壮族自治区桂林: 0.0 %广西壮族自治区桂林: 0.0 %廊坊: 0.0 %廊坊: 0.0 %张家口: 0.7 %张家口: 0.7 %张家口市: 0.1 %张家口市: 0.1 %张掖: 0.2 %张掖: 0.2 %徐州: 0.0 %徐州: 0.0 %成都: 1.2 %成都: 1.2 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.2 %无锡: 0.2 %昆明: 0.3 %昆明: 0.3 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.5 %杭州: 1.5 %枣庄: 0.1 %枣庄: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.2 %桂林: 0.2 %榆林: 0.1 %榆林: 0.1 %武汉: 1.2 %武汉: 1.2 %沈阳: 0.3 %沈阳: 0.3 %沧州: 0.1 %沧州: 0.1 %泉州: 0.1 %泉州: 0.1 %济南: 0.5 %济南: 0.5 %济宁: 0.2 %济宁: 0.2 %淄博: 0.0 %淄博: 0.0 %淮南: 0.1 %淮南: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.0 %温州: 0.0 %渭南: 0.1 %渭南: 0.1 %湖州: 0.0 %湖州: 0.0 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.7 %漯河: 0.7 %漳州: 0.0 %漳州: 0.0 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.5 %烟台: 0.5 %益阳: 0.1 %益阳: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.1 %绵阳: 0.1 %美国: 0.0 %美国: 0.0 %芒廷维尤: 10.7 %芒廷维尤: 10.7 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.1 %苏州: 0.1 %莆田: 0.0 %莆田: 0.0 %菏泽: 0.0 %菏泽: 0.0 %营口: 0.1 %营口: 0.1 %萨拉戈萨: 0.1 %萨拉戈萨: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 30.4 %西宁: 30.4 %西安: 2.6 %西安: 2.6 %西安市未央区: 0.0 %西安市未央区: 0.0 %西安市雁塔区: 0.0 %西安市雁塔区: 0.0 %贵阳: 0.1 %贵阳: 0.1 %费利蒙: 0.0 %费利蒙: 0.0 %运城: 0.1 %运城: 0.1 %连云港: 0.1 %连云港: 0.1 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.1 %重庆: 0.1 %镇江: 0.1 %镇江: 0.1 %长沙: 1.0 %长沙: 1.0 %长治: 0.1 %长治: 0.1 %阜阳: 0.1 %阜阳: 0.1 %阿姆斯特丹: 0.0 %阿姆斯特丹: 0.0 %雅加达: 0.0 %雅加达: 0.0 %青岛: 1.1 %青岛: 1.1 %首尔: 0.1 %首尔: 0.1 %香港: 0.0 %香港: 0.0 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黄石: 0.0 %黄石: 0.0 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Central DistrictChinaFremontKao-sungKorea Republic ofLuxembourgMariano ComenseNorth PointPolandResearchRichardsonRomaniaTurkeyTysons CornerUnited StatesWandsworth[]上海上海市东爪哇东莞东营中卫中山临汾临沂九江伊利诺伊州伦敦佛山信阳六安包头北京北京市十堰南京南宁南昌南通南阳厦门台北合肥咸阳哈尔滨哈尔滨市哥伦布嘉兴大连天津威海安卡拉安庆宣城巴中常州广州广西壮族自治区桂林廊坊张家口张家口市张掖徐州成都扬州新乡无锡昆明朝阳杭州枣庄格兰特县桂林榆林武汉沈阳沧州泉州济南济宁淄博淮南深圳温州渭南湖州湘潭漯河漳州潍坊烟台益阳盐城石家庄秦皇岛纽约绍兴绵阳美国芒廷维尤芝加哥苏州莆田菏泽营口萨拉戈萨衡水衡阳衢州西宁西安西安市未央区西安市雁塔区贵阳费利蒙运城连云港邢台邯郸郑州鄂州重庆镇江长沙长治阜阳阿姆斯特丹雅加达青岛首尔香港香港特别行政区黄冈黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1918) PDF downloads(230) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint