Citation: | Guo Yiduo, Gong Jian, Huang Darong, Jin Hubing. Unified Theoretical Frame of a Joint Transmitter-Receiver Reduced Dimensional STAP Method for an Airborne MIMO Radar[J]. Journal of Radars, 2016, 5(5): 517-525. doi: 10.12000/JR16108 |
[1] |
王永良, 彭应宁. 空时自适应信号处理[M]. 北京:清华大学出版社, 2000. Wang Y L and Peng Y N. Space Time Adaptive Processing[M].Beijing:Tsinghua University Press, 2000.
|
[2] |
Melvin W L. A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1):19-35.
|
[3] |
Yang X, Sun Y, Zeng T, et al.. Fast STAP method based on PAST with sparse constraint for airborne phased array radar[J]. IEEE Transactions on Signal Processing, 2016, 64(17):4550-4561.
|
[4] |
Klemm R. Suboptimum clutter suppression for airborne phased array radar[C]. IEE Radar Conference, London, 1982, 216:473-476.
|
[5] |
Klemm R. Adaptive airborne MTI:An auxiliary channel approach[J]. IEE Proceedings F, 1987, 134(3):269-276.
|
[6] |
保铮, 廖桂生, 吴仁彪, 等. 相控阵机载雷达杂波抑制的时-空二维自适应滤波[J]. 电子学报, 1993, 21(9):1-7. Bao Z, Liao G S, Wu R B, et al.. 2-D temporal-spatial adaptive clutter suppression for phased array airborne radars[J]. Acta Electronic Sinica, 1993, 21(9):1-7.
|
[7] |
Wang H and Cai L. On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE Transactions on Aerospace Electronics Systems, 1994, 30(3):660-669.
|
[8] |
Wang Y, Chen J, Bao Z, et al.. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Transactions on Aerospace Electronics Systems, 2003, 39(1):70-81.
|
[9] |
Fishler E, Haimovich A, Blum R, et al.. MIMO radar:An idea whose time has come[C]. Proceedings of the IEEE Radar Conference, 2004:71-78.
|
[10] |
Li J and Stoica P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5):106-114.
|
[11] |
Chen C Y and Vaidyanathan P P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions[J]. IEEE Transactions on Signal Processing, 2008, 56(2):623-635.
|
[12] |
Wang G H and Lu Y L. Clutter rank of STAP in MIMO radar with waveform diversity[J]. IEEE Transactions on Signal Processing, 2010, 58(2):938-943.
|
[13] |
He J, Feng D, and Ma L. Reduced-dimension clutter suppression method for airborne multiple-input multiple-output radar based on three iterations[J]. IET Radar, Sonar & Navigation, 2015, 9(3):249-254.
|
[14] |
王珽, 赵拥军. 基于三迭代与二阶锥规划的机载MIMO雷达稳健降维STAP方法[J]. 航空学报, 2015, 36(11):3706-3714. Wang T and Zhao Y J. Robust reduced-dimension STAP method for airborne MIMO radar based on TRIA and SOCP[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3706-3714.
|
[15] |
Guerci J R. Cognitive Radar-The Knowledge-Aidded Fully Adaptive Approach[M]. Boston, London:Artech House, 2010:91-109.
|
[16] |
Wang H Y, Liao G S, Li J, et al.. Waveform optimization for MIMO-STAP to improve the detection performance[J]. Signal Processing, 2011, 91(11):2690-2696.
|
[17] |
Wang H Y, Liao G S, Li J, et al.. Robust waveform design for MIMO-STAP to improve the worst-case detection performance[J]. EURASIP Journal on Advances in Signal Processing, 2013, 52:1-8.
|
[18] |
唐波, 张玉, 李科, 等. 杂波中MIMO雷达恒模波形及接收机联合优化算法研究[J]. 电子学报, 2014, 42(9):1706-1711. Tang B, Zhang Y, Li K, et al.. Joint constant-envelope waveform and receiver design for MIMO radar in the presence of clutter[J]. Acta Electronica Sinica, 2014, 42(9):1706-1711.
|
[19] |
Tang B and Tang J. Joint design of transmit waveforms and receive filters for MIMO radar space time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18):4707-4722.
|
[20] |
Tang B, Li J, Zhang Y, et al.. Design of MIMO radar waveform covariance matrix for clutter and jamming suppression based on space time adaptive processing[J]. Signal Processing, 2016, 121:60-69.
|
[1] | XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186 |
[2] | ZHOU Qunyan, WANG Siran, DAI Junyan, CHENG Qiang. Simultaneous Direction of Arrival Estimation and Radar Cross-section Reduction Based on Space-time-coding Digital Metasurfaces[J]. Journal of Radars, 2024, 13(1): 150-159. doi: 10.12000/JR23216 |
[3] | ZHOU Jingyi, ZHENG Shilie, YU Xianbin, HUI Xiaonan, ZHANG Xianmin. Reconfigurable Mode Vortex Beam Generation Based on Transmissive Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2022, 11(4): 728-735. doi: 10.12000/JR22021 |
[4] | JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167 |
[5] | FANG Zuqi, CHENG Qiang, CUI Tiejun. Nonlinear Quasi-Bessel Beam Generation Based on the Time-domain Digital-Coding Metasurface[J]. Journal of Radars, 2021, 10(2): 267-273. doi: 10.12000/JR21043 |
[6] | LI Shangyang, FU Shilei, XU Feng. DNN-based Intelligent Beamforming on a Programmable Metasurface[J]. Journal of Radars, 2021, 10(2): 259-266. doi: 10.12000/JR21039 |
[7] | SHUANG Ya, LI Li, WANG Zhuo, WEI Menglin, LI Lianlin. Controllable Manipulation of Wi-Fi Signals Using Tunable Metasurface[J]. Journal of Radars, 2021, 10(2): 313-325. doi: 10.12000/JR21012 |
[8] | YASIR Saifullah, YANG Guomin, XU Feng. A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering[J]. Journal of Radars, 2021, 10(3): 382-390. doi: 10.12000/JR21061 |
[9] | HAN Jiaqi, TIAN Shuncheng, YI Hao, MA Xiangjin, LIAO Guisheng, LI Long. High-performance Microwave Computational Imaging System Based on Information Metamaterials[J]. Journal of Radars, 2021, 10(2): 288-295. doi: 10.12000/JR21002 |
[10] | SHI Hongyu, LI Guoqiang, LIU Kang, LI Bolin, YI Jianjia, ZHANG Anxue, XU Zhuo. Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 785-793. doi: 10.12000/JR21070 |
[11] | WANG Yanfei, LI Heping, HAN Song. The Theory and Method of Pulse Coding for Radar and Its Applications[J]. Journal of Radars, 2019, 8(1): 1-16. doi: 10.12000/JR19023 |
[12] | Li Shichao, Hou Peipei, Qu Jian, Hao Congjing, Jia Qu, Li Gang, Li Chao. A Novel Terahertz Frequency Scanning Antenna Based on Slotted Waveguide Arrays[J]. Journal of Radars, 2018, 7(1): 119-126. doi: 10.12000/JR17098 |
[13] | Liu Xiaoming, Yu Junsheng, Chen Xiaodong, Zhou Jun, Gan Lu, Zhang Chijian. A Broadband Quasi-optical System for Measuring the Dielectric Properties in the Terahertz Band[J]. Journal of Radars, 2018, 7(1): 56-66. doi: 10.12000/JR17110 |
[14] | Wu Yang, Bai Yang, Yin Hongcheng, Zhang Liangcong. Terahertz Radar Cross Section Measurements Based on Millimeter-wave Converter[J]. Journal of Radars, 2018, 7(1): 147-152. doi: 10.12000/JR17099 |
[15] | Mou Yuan, Wu Zhensen, Zhao Hao, Wu Guangling. The Terahertz Scattering Analysis of Rough Metallic and Dielectric Targets[J]. Journal of Radars, 2018, 7(1): 83-90. doi: 10.12000/JR17094 |
[16] | Zhao Hua, Guo Lixin. Electromagnetic Scattering Characteristics of Fractal Rough Coated Objects in the Terahertz Range[J]. Journal of Radars, 2018, 7(1): 91-96. doi: 10.12000/JR17091 |
[17] | Chen Shuo, Luo Chenggao, Deng Bin, Qin Yuliang, Wang Hongqiang, Zhuang Zhaowen. Research on Resolution of Terahertz Coded-aperture Imaging[J]. Journal of Radars, 2018, 7(1): 127-138. doi: 10.12000/JR17089 |
[18] | Wang Fulai, Pang Chen, Li Yongzhen, Wang Xuesong. Orthogonal Polyphase Coded Waveform Design Method for Simultaneous Fully Polarimetric Radar[J]. Journal of Radars, 2017, 6(4): 340-348. doi: 10.12000/JR16150 |
[19] | Yu Yang, Pi Yi-ming. Terahertz High-resolution Radar Clutter Measurement and Analysis[J]. Journal of Radars, 2015, 4(2): 217-221. doi: 10.12000/JR14123 |
[20] | Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125 |