SU Hanning, PAN Jiameng, BAO Qinglong, et al. Anti-interrupted sampling repeater jamming method in the waveform domain before matched filtering[J]. Journal of Radars, 2024, 13(1): 240–252. doi: 10.12000/JR23149
Citation: ZHOU Jingyi, ZHENG Shilie, YU Xianbin, et al. Reconfigurable mode vortex beam generation based on transmissive metasurfaces in the terahertz band[J]. Journal of Radars, 2022, 11(4): 728–735. doi: 10.12000/JR22021

Reconfigurable Mode Vortex Beam Generation Based on Transmissive Metasurfaces in the Terahertz Band

DOI: 10.12000/JR22021 CSTR: 32380.14.JR22021
Funds:  This work is partly sponsored by Zhejiang Lab (2020LC0AD01)
More Information
  • Corresponding author: ZHENG Shilie, zhengsl@zju.edu.cn
  • Received Date: 2022-01-26
  • Rev Recd Date: 2022-04-14
  • Available Online: 2022-04-20
  • Publish Date: 2022-05-09
  • Combining Terahertz (THz) and Orbital Angular Momentum (OAM) technologies has great potential in high-speed wireless communication. Theoretically, OAM with different modes has strict orthogonality. The communication capacity of the system will improve significantly if OAM technology is applied to the THz communication system. Thus, the manner to generate a high-quality and dynamically controllable THz-OAM beam has been of significant interest to researchers in related fields. In this study, a double-layer transmissive metasurface that uses 3D printing as the processing method with a low cost and processing difficulty is designed. Note that the height of the unit cell for constructing the metasurface is configurable. As the height changes continuously, the phase of the transmitted wave covers 0~2π within 90~110 GHz, while the transmittance of the units is always higher than 88%. At 100 GHz, which is fed by a WR-10 standard waveguide horn antenna, OAM beams with different modes are generated by changing the relative rotation angle between the double-layer metasurface. The simulation results show that the metasurface antenna designed in this study can achieve OAM beams of l=1,2,3, and the two-dimensional amplitude and phase results correspond with the characteristics of the corresponding modes. When l=1,2,3, the OAM beam’s modal purity is 85.4%, 84.9%, and 83.4%, respectively. The measurement results include the results at frequency points of 90, 100, and 110 GHz. The results show that the OAM beam has a high-quality bandwidth of 20 GHz, which indicates that the metasurface antenna designed in this study has a wide working bandwidth at a high frequency and can be applied to high-frequency OAM communication.

     

  • [1]
    JIA Shi, ZHANG Lu, WANG Shiwei, et al. 2 × 300 Gbit/s Line rate PS-64QAM-OFDM THz photonic-wireless transmission[J]. Journal of Lightwave Technology, 2020, 38(17): 4715–4721. doi: 10.1109/jlt.2020.2995702
    [2]
    DING Shenghui, LI Qi, LI Yunda, et al. Continuous-wave terahertz digital holography by use of a pyroelectric array camera[J]. Optics Letters, 2011, 36(11): 1993–1995. doi: 10.1364/OL.36.001993
    [3]
    BECK M, PLÖTZING T, MAUSSANG K, et al. High-speed THz spectroscopic imaging at ten kilohertz pixel rate with amplitude and phase contrast[J]. Optics Express, 2019, 27(8): 10866–10872. doi: 10.1364/OE.27.010866
    [4]
    MOON S R, SUNG M, LEE J K, et al. Cost-effective photonics-based THz wireless transmission using PAM-N signals in the 0.3 THz band[J]. Journal of Lightwave Technology, 2021, 39(2): 357–362. doi: 10.1109/JLT.2020.3032613
    [5]
    AlLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
    [6]
    YAO A M and PADGETT M J. Orbital angular momentum: Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161–204. doi: 10.1364/AOP.3.000161
    [7]
    魏旭立. 太赫兹特殊光束的产生及其在太赫兹通信和成像中的应用[D]. [博士论文], 华中科技大学, 2016.

    WEI Xuli. Generation of terahertz exotic beams and their application in terahertz communication and imaging systems[D]. [Ph. D. dissertation], Huazhong University of Science & Technology, 2016.
    [8]
    BAI Qiang, TENNANT A, and ALLEN B. Experimental circular phased array for generating OAM radio beams[J]. Electronics Letters, 2014, 50(20): 1414–1415. doi: 10.1049/el.2014.2860
    [9]
    TENNANT A and ALLEN B. Generation of OAM radio waves using circular time-switched array antenna[J]. Electronics Letters, 2012, 48(21): 1365–1366. doi: 10.1049/el.2012.2664
    [10]
    TURNBULL G A, ROBERTSON D A, SMITH G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127(4/6): 183–188. doi: 10.1016/0030-4018(96)00070-3
    [11]
    CHEN Yiling, ZHENG Shilie, LI Yue, et al. A Flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 1156–1158. doi: 10.1109/LAWP.2015.2497243
    [12]
    HUI Xiaonan, ZHENG Shilie, HU Yiping, et al. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 966–969. doi: 10.1109/LAWP.2014.2387431
    [13]
    李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    LI Xiong, MA Xiaoliang, and LUO Xiangang. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001
    [14]
    WU Gengbo, CHAN Kafai, QU Shiwei, et al. Orbital angular momentum (OAM) mode-reconfigurable discrete dielectric lens operating at 300 GHz[J]. IEEE Transactions on Terahertz Science and Technology, 2020, 10(5): 480–489. doi: 10.1109/TTHZ.2020.2984451
    [15]
    MIYAMOTO K, SUIZU K, AKIBA T, et al. Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate[J]. Applied Physics Letters, 2014, 104(26): 261104. doi: 10.1063/1.4886407
    [16]
    YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    [17]
    MENG Zankui, SHI Yan, WEI Wenyue, et al. Graphene- based metamaterial transmitarray antenna design for the generation of tunable orbital angular momentum vortex electromagnetic waves[J]. Optical Materials Express, 2019, 9(9): 3709–3716. doi: 10.1364/OME.9.003709
    [18]
    WANG Ling, YANG Yang, LI Shufang, et al. Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide[J]. IEEE Photonics Journal, 2020, 12(3): 4600712. doi: 10.1109/JPHOT.2020.3000779
    [19]
    WANG Ling, YANG Yang, DENG Li, et al. Vanadium dioxide embedded frequency reconfigurable metasurface for multi-dimensional multiplexing of terahertz communication[J]. Journal of Physics D:Applied Physics, 2021, 54(25): 255003. doi: 10.1088/1361-6463/abf166
    [20]
    YANG Qili, WANG Yan, LIANG Lanju, et al. Broadband transparent terahertz vortex beam generator based on thermally tunable geometric metasurface[J]. Optical Materials, 2021, 121: 111574. doi: 10.1016/j.optmat.2021.111574
    [21]
    FORMLABS[EB/OL]. https://formlabs.com, 2020.
    [22]
    MAHMOULI F E and WALKER S. Orbital angular momentum generation in a 60 GHz wireless radio channel[C]. 2012 20th Telecommunications Forum (TELFOR). Belgrade, Serbia, 2012: 315–318.
    [23]
    WANG Yicheng, ZHANG Huajin, YU Haohai, et al. Light propagation in an optically active plate with topological charge[J]. Applied Physics Letters, 2012, 101(17): 171114. doi: 10.1063/1.4764546
    [24]
    SUN Changzheng, ZHANG Juan, XIONG Bing, et al. Analysis of OAM mode purity of integrated optical vortex beam emitters[J]. IEEE Photonics Journal, 2017, 9(1): 1–7. doi: 10.1109/JPHOT.2017.265272
  • Relative Articles

    [1]WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105
    [2]KONG Lingjiang, GUO Shisheng, CHEN Jiahui, WU Peilun, CUI Guolong. Overview and Prospects of Multipath Exploitation Radar Target Detection Technology[J]. Journal of Radars, 2024, 13(1): 23-45. doi: 10.12000/JR23134
    [3]ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133
    [4]GUAN Jian, LIU Ningbo, WANG Guoqing, DING Hao, DONG Yunlong, HUANG Yong, TIAN Kaixiang, ZHANG Mengyu. Sea-detecting Radar Experiment and Target Feature Data Acquisition for Dual Polarization Multistate Scattering Dataset of Marine Targets(in English)[J]. Journal of Radars, 2023, 12(2): 456-469. doi: 10.12000/JR23029
    [5]DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037
    [6]WU Wenjun, TANG Bo, TANG Jun, HU Yuankui. Waveform Design for Dual-function Radar-communication Systems in Clutter[J]. Journal of Radars, 2022, 11(4): 570-580. doi: 10.12000/JR22105
    [7]ZHANG Chao, WANG Yuanhe, JIANG Xuefeng. Quantum Radar with Vortex Microwave Photons[J]. Journal of Radars, 2021, 10(5): 749-759. doi: 10.12000/JR21095
    [8]LIU Ningbo, DING Hao, HUANG Yong, DONG Yunlong, WANG Guoqing, DONG Kai. Annual Progress of the Sea-detecting X-band Radar and Data Acquisition Program[J]. Journal of Radars, 2021, 10(1): 173-182. doi: 10.12000/JR21011
    [9]WAN Xianrong, LIU Tongtong, YI Jianxin, DAN Yangpeng, HU Xiaokai. System Design and Target Detection Experiments for LTE-based Passive Radar[J]. Journal of Radars, 2020, 9(6): 967-973. doi: 10.12000/JR18111
    [10]CHEN Shichao, GAO Heting, LUO Feng. Target Detection in Sea Clutter Based on Combined Characteristics of Polarization[J]. Journal of Radars, 2020, 9(4): 664-673. doi: 10.12000/JR20072
    [11]GUAN Jian. Summary of Marine Radar Target Characteristics[J]. Journal of Radars, 2020, 9(4): 674-683. doi: 10.12000/JR20114
    [12]XU Shuwen, BAI Xiaohui, GUO Zixun, SHUI Penglang. Status and Prospects of Feature-based Detection Methods for Floating Targets on the Sea Surface (in English)[J]. Journal of Radars, 2020, 9(4): 684-714. doi: 10.12000/JR20084
    [13]LIU Ningbo, DONG Yunlong, WANG Guoqing, DING Hao, HUANG Yong, GUAN Jian, CHEN Xiaolong, HE You. Sea-detecting X-band Radar and Data Acquisition Program (in English)[J]. Journal of Radars, 2019, 8(5): 656-667. doi: 10.12000/JR19089
    [14]Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040
    [15]Wang Longgang, Li Lianlin. Short-range Radar Detection with (M, N)-Coprime Array Configurations(in English)[J]. Journal of Radars, 2016, 5(3): 244-253. doi: 10.12000/JR16022
    [16]Ding Hao, Dong Yunlong, Liu Ningbo, Wang Guoqing, Guan Jian. Overview and Prospects of Research on Sea Clutter Property Cognition[J]. Journal of Radars, 2016, 5(5): 499-516. doi: 10.12000/JR16069
    [17]Hu Cheng, Liu Changjiang, Zeng Tao. Bistatic Forward Scattering Radar Detection and Imaging[J]. Journal of Radars, 2016, 5(3): 229-243. doi: 10.12000/JR16058
    [18]Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125
    [19]Chen Xiao-long, Dong Yun-long, Li Xiu-you, Guan Jian. Modeling of Micromotion and Analysis of Properties of Rigid Marine Targets[J]. Journal of Radars, 2015, 4(6): 630-638. doi: 10.12000/JR15079
    [20]Yan Liang, Sun Pei-lin, Yi Lei, Han Ning, Tang Jun. Modeling of Compound Gaussian Sea Clutter Based on Inverse Gaussian Distribution[J]. Journal of Radars, 2013, 2(4): 461-465. doi: 10.3724/SP.J.1300.2013.13083
  • Cited by

    Periodical cited type(6)

    1. 邢孟道,马鹏辉,楼屹杉,孙光才,林浩. 合成孔径雷达快速后向投影算法综述. 雷达学报. 2024(01): 1-22 . 本站查看
    2. 周开心,刘丹阳,朱永锋,张永杰,周剑雄. 强杂波背景下调频步进DBS技术研究. 系统工程与电子技术. 2024(09): 2960-2967 .
    3. 匡辉,于海锋,高贺利,刘磊,刘杰,张润宁. 超高分辨率星载SAR系统多子带信号处理技术研究. 信号处理. 2022(04): 879-888 .
    4. 吕明久,陈文峰,徐芳,赵欣,杨军. 基于原子范数最小化的步进频率ISAR一维高分辨距离成像方法. 电子与信息学报. 2021(08): 2267-2275 .
    5. 张亦凡,黄平平,徐伟,谭维贤,高志奇. 星载斜视滑动聚束SAR子孔径成像处理算法研究. 信号处理. 2021(08): 1525-1532 .
    6. 吕明久,徐芳,赵丽,陈莉,陈浩. 载频不同分布方式下RSF波形稀疏重构性能分析. 空军预警学院学报. 2020(05): 319-324 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.5 %FULLTEXT: 30.5 %META: 62.3 %META: 62.3 %PDF: 7.2 %PDF: 7.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %其他: 1.0 %其他: 1.0 %Bacoor: 0.2 %Bacoor: 0.2 %China: 1.8 %China: 1.8 %Gwynn Oak: 0.0 %Gwynn Oak: 0.0 %Kennedy Town: 0.0 %Kennedy Town: 0.0 %Saudi Arabia: 0.1 %Saudi Arabia: 0.1 %Singapore: 0.2 %Singapore: 0.2 %Taichung: 0.0 %Taichung: 0.0 %United States: 0.4 %United States: 0.4 %[]: 0.4 %[]: 0.4 %上海: 1.6 %上海: 1.6 %东京都: 0.0 %东京都: 0.0 %东莞: 0.6 %东莞: 0.6 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.2 %临沂: 0.2 %丹东: 0.0 %丹东: 0.0 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %九江: 0.2 %九江: 0.2 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.1 %佛山: 0.1 %保定: 0.2 %保定: 0.2 %六安: 0.0 %六安: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.1 %兰辛: 0.1 %凤凰城: 0.0 %凤凰城: 0.0 %加利福尼亚: 0.0 %加利福尼亚: 0.0 %北京: 6.5 %北京: 6.5 %十堰: 0.1 %十堰: 0.1 %南京: 2.5 %南京: 2.5 %南充: 0.0 %南充: 0.0 %南宁: 0.1 %南宁: 0.1 %南昌: 0.2 %南昌: 0.2 %南通: 0.1 %南通: 0.1 %卡拉奇: 0.1 %卡拉奇: 0.1 %厦门: 0.0 %厦门: 0.0 %台中: 0.0 %台中: 0.0 %台北: 0.2 %台北: 0.2 %台州: 0.1 %台州: 0.1 %台湾: 0.1 %台湾: 0.1 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.7 %合肥: 0.7 %周口: 0.0 %周口: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 0.8 %哈尔滨: 0.8 %商洛: 0.1 %商洛: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %坦佩: 0.0 %坦佩: 0.0 %大同: 0.0 %大同: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.7 %天津: 0.7 %太原: 0.2 %太原: 0.2 %威海: 0.1 %威海: 0.1 %孟买: 0.5 %孟买: 0.5 %宁波: 0.0 %宁波: 0.0 %安庆: 0.1 %安庆: 0.1 %安康: 0.1 %安康: 0.1 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.4 %宣城: 0.4 %宿州: 0.0 %宿州: 0.0 %巴中: 0.1 %巴中: 0.1 %常州: 0.1 %常州: 0.1 %广元: 0.0 %广元: 0.0 %广州: 0.9 %广州: 0.9 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %开封: 0.7 %开封: 0.7 %张家口: 1.3 %张家口: 1.3 %张家界: 0.1 %张家界: 0.1 %徐州: 0.2 %徐州: 0.2 %德州: 0.0 %德州: 0.0 %德里: 0.1 %德里: 0.1 %忻州: 0.0 %忻州: 0.0 %恩施: 0.1 %恩施: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 1.2 %成都: 1.2 %扬州: 0.3 %扬州: 0.3 %新奥尔良: 0.0 %新奥尔良: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.6 %昆明: 0.6 %晋城: 0.0 %晋城: 0.0 %曼谷: 0.1 %曼谷: 0.1 %朝阳: 0.2 %朝阳: 0.2 %来宾: 0.0 %来宾: 0.0 %杭州: 4.3 %杭州: 4.3 %柳州: 0.1 %柳州: 0.1 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.2 %桂林: 0.2 %武汉: 0.9 %武汉: 0.9 %汉中: 0.0 %汉中: 0.0 %江门: 0.0 %江门: 0.0 %沈阳: 0.3 %沈阳: 0.3 %波士顿: 0.0 %波士顿: 0.0 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.1 %海口: 0.1 %淮北: 0.0 %淮北: 0.0 %淮南: 0.1 %淮南: 0.1 %深圳: 1.3 %深圳: 1.3 %温州: 0.2 %温州: 0.2 %渭南: 0.2 %渭南: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.2 %湘潭: 0.2 %漯河: 0.6 %漯河: 0.6 %潍坊: 0.0 %潍坊: 0.0 %玉林: 0.1 %玉林: 0.1 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.4 %石家庄: 0.4 %福冈县: 0.1 %福冈县: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.0 %米兰: 0.0 %纽约: 0.0 %纽约: 0.0 %绍兴: 0.0 %绍兴: 0.0 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 25.8 %芒廷维尤: 25.8 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.5 %苏州: 0.5 %荆州: 0.0 %荆州: 0.0 %菏泽: 0.0 %菏泽: 0.0 %萍乡: 0.1 %萍乡: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %葵涌: 0.2 %葵涌: 0.2 %蚌埠: 0.2 %蚌埠: 0.2 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.1 %衢州: 0.1 %西宁: 19.4 %西宁: 19.4 %西安: 2.7 %西安: 2.7 %西安市鄠邑区: 0.0 %西安市鄠邑区: 0.0 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.4 %运城: 0.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.4 %重庆: 0.4 %银川: 0.1 %银川: 0.1 %镇江: 0.1 %镇江: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 1.1 %长沙: 1.1 %长治: 0.1 %长治: 0.1 %雷恩: 0.1 %雷恩: 0.1 %青岛: 0.6 %青岛: 0.6 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %驻马店: 0.0 %驻马店: 0.0 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他BacoorChinaGwynn OakKennedy TownSaudi ArabiaSingaporeTaichungUnited States[]上海东京都东莞中山临汾临沂丹东丽水乌鲁木齐九江伦敦佛山保定六安兰州兰辛凤凰城加利福尼亚北京十堰南京南充南宁南昌南通卡拉奇厦门台中台北台州台湾台湾省合肥周口呼和浩特咸阳哈尔滨商洛嘉兴圣彼得堡坦佩大同大连天津太原威海孟买宁波安庆安康宝鸡宣城宿州巴中常州广元广州库比蒂诺开封张家口张家界徐州德州德里忻州恩施惠州成都扬州新奥尔良无锡昆明晋城曼谷朝阳来宾杭州柳州株洲格兰特县桂林武汉汉中江门沈阳波士顿泰米尔纳德洛杉矶洛阳济南海口淮北淮南深圳温州渭南湖州湘潭漯河潍坊玉林盐城石家庄福冈县福州秦皇岛米兰纽约绍兴绵阳芒廷维尤芜湖芝加哥苏州荆州菏泽萍乡葫芦岛葵涌蚌埠衡水衡阳衢州西宁西安西安市鄠邑区诺沃克贵阳运城邯郸郑州重庆银川镇江长春长沙长治雷恩青岛香港香港特别行政区驻马店齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1745) PDF downloads(203) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint