Citation: | ZHOU Jingyi, ZHENG Shilie, YU Xianbin, et al. Reconfigurable mode vortex beam generation based on transmissive metasurfaces in the terahertz band[J]. Journal of Radars, 2022, 11(4): 728–735. doi: 10.12000/JR22021 |
[1] |
JIA Shi, ZHANG Lu, WANG Shiwei, et al. 2 × 300 Gbit/s Line rate PS-64QAM-OFDM THz photonic-wireless transmission[J]. Journal of Lightwave Technology, 2020, 38(17): 4715–4721. doi: 10.1109/jlt.2020.2995702
|
[2] |
DING Shenghui, LI Qi, LI Yunda, et al. Continuous-wave terahertz digital holography by use of a pyroelectric array camera[J]. Optics Letters, 2011, 36(11): 1993–1995. doi: 10.1364/OL.36.001993
|
[3] |
BECK M, PLÖTZING T, MAUSSANG K, et al. High-speed THz spectroscopic imaging at ten kilohertz pixel rate with amplitude and phase contrast[J]. Optics Express, 2019, 27(8): 10866–10872. doi: 10.1364/OE.27.010866
|
[4] |
MOON S R, SUNG M, LEE J K, et al. Cost-effective photonics-based THz wireless transmission using PAM-N signals in the 0.3 THz band[J]. Journal of Lightwave Technology, 2021, 39(2): 357–362. doi: 10.1109/JLT.2020.3032613
|
[5] |
AlLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
|
[6] |
YAO A M and PADGETT M J. Orbital angular momentum: Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161–204. doi: 10.1364/AOP.3.000161
|
[7] |
魏旭立. 太赫兹特殊光束的产生及其在太赫兹通信和成像中的应用[D]. [博士论文], 华中科技大学, 2016.
WEI Xuli. Generation of terahertz exotic beams and their application in terahertz communication and imaging systems[D]. [Ph. D. dissertation], Huazhong University of Science & Technology, 2016.
|
[8] |
BAI Qiang, TENNANT A, and ALLEN B. Experimental circular phased array for generating OAM radio beams[J]. Electronics Letters, 2014, 50(20): 1414–1415. doi: 10.1049/el.2014.2860
|
[9] |
TENNANT A and ALLEN B. Generation of OAM radio waves using circular time-switched array antenna[J]. Electronics Letters, 2012, 48(21): 1365–1366. doi: 10.1049/el.2012.2664
|
[10] |
TURNBULL G A, ROBERTSON D A, SMITH G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127(4/6): 183–188. doi: 10.1016/0030-4018(96)00070-3
|
[11] |
CHEN Yiling, ZHENG Shilie, LI Yue, et al. A Flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 1156–1158. doi: 10.1109/LAWP.2015.2497243
|
[12] |
HUI Xiaonan, ZHENG Shilie, HU Yiping, et al. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 966–969. doi: 10.1109/LAWP.2014.2387431
|
[13] |
李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001
LI Xiong, MA Xiaoliang, and LUO Xiangang. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001
|
[14] |
WU Gengbo, CHAN Kafai, QU Shiwei, et al. Orbital angular momentum (OAM) mode-reconfigurable discrete dielectric lens operating at 300 GHz[J]. IEEE Transactions on Terahertz Science and Technology, 2020, 10(5): 480–489. doi: 10.1109/TTHZ.2020.2984451
|
[15] |
MIYAMOTO K, SUIZU K, AKIBA T, et al. Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate[J]. Applied Physics Letters, 2014, 104(26): 261104. doi: 10.1063/1.4886407
|
[16] |
YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
|
[17] |
MENG Zankui, SHI Yan, WEI Wenyue, et al. Graphene- based metamaterial transmitarray antenna design for the generation of tunable orbital angular momentum vortex electromagnetic waves[J]. Optical Materials Express, 2019, 9(9): 3709–3716. doi: 10.1364/OME.9.003709
|
[18] |
WANG Ling, YANG Yang, LI Shufang, et al. Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide[J]. IEEE Photonics Journal, 2020, 12(3): 4600712. doi: 10.1109/JPHOT.2020.3000779
|
[19] |
WANG Ling, YANG Yang, DENG Li, et al. Vanadium dioxide embedded frequency reconfigurable metasurface for multi-dimensional multiplexing of terahertz communication[J]. Journal of Physics D:Applied Physics, 2021, 54(25): 255003. doi: 10.1088/1361-6463/abf166
|
[20] |
YANG Qili, WANG Yan, LIANG Lanju, et al. Broadband transparent terahertz vortex beam generator based on thermally tunable geometric metasurface[J]. Optical Materials, 2021, 121: 111574. doi: 10.1016/j.optmat.2021.111574
|
[21] |
FORMLABS[EB/OL]. https://formlabs.com, 2020.
|
[22] |
MAHMOULI F E and WALKER S. Orbital angular momentum generation in a 60 GHz wireless radio channel[C]. 2012 20th Telecommunications Forum (TELFOR). Belgrade, Serbia, 2012: 315–318.
|
[23] |
WANG Yicheng, ZHANG Huajin, YU Haohai, et al. Light propagation in an optically active plate with topological charge[J]. Applied Physics Letters, 2012, 101(17): 171114. doi: 10.1063/1.4764546
|
[24] |
SUN Changzheng, ZHANG Juan, XIONG Bing, et al. Analysis of OAM mode purity of integrated optical vortex beam emitters[J]. IEEE Photonics Journal, 2017, 9(1): 1–7. doi: 10.1109/JPHOT.2017.265272
|
[1] | WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105 |
[2] | KONG Lingjiang, GUO Shisheng, CHEN Jiahui, WU Peilun, CUI Guolong. Overview and Prospects of Multipath Exploitation Radar Target Detection Technology[J]. Journal of Radars, 2024, 13(1): 23-45. doi: 10.12000/JR23134 |
[3] | ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133 |
[4] | GUAN Jian, LIU Ningbo, WANG Guoqing, DING Hao, DONG Yunlong, HUANG Yong, TIAN Kaixiang, ZHANG Mengyu. Sea-detecting Radar Experiment and Target Feature Data Acquisition for Dual Polarization Multistate Scattering Dataset of Marine Targets(in English)[J]. Journal of Radars, 2023, 12(2): 456-469. doi: 10.12000/JR23029 |
[5] | DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037 |
[6] | WU Wenjun, TANG Bo, TANG Jun, HU Yuankui. Waveform Design for Dual-function Radar-communication Systems in Clutter[J]. Journal of Radars, 2022, 11(4): 570-580. doi: 10.12000/JR22105 |
[7] | ZHANG Chao, WANG Yuanhe, JIANG Xuefeng. Quantum Radar with Vortex Microwave Photons[J]. Journal of Radars, 2021, 10(5): 749-759. doi: 10.12000/JR21095 |
[8] | LIU Ningbo, DING Hao, HUANG Yong, DONG Yunlong, WANG Guoqing, DONG Kai. Annual Progress of the Sea-detecting X-band Radar and Data Acquisition Program[J]. Journal of Radars, 2021, 10(1): 173-182. doi: 10.12000/JR21011 |
[9] | WAN Xianrong, LIU Tongtong, YI Jianxin, DAN Yangpeng, HU Xiaokai. System Design and Target Detection Experiments for LTE-based Passive Radar[J]. Journal of Radars, 2020, 9(6): 967-973. doi: 10.12000/JR18111 |
[10] | CHEN Shichao, GAO Heting, LUO Feng. Target Detection in Sea Clutter Based on Combined Characteristics of Polarization[J]. Journal of Radars, 2020, 9(4): 664-673. doi: 10.12000/JR20072 |
[11] | GUAN Jian. Summary of Marine Radar Target Characteristics[J]. Journal of Radars, 2020, 9(4): 674-683. doi: 10.12000/JR20114 |
[12] | XU Shuwen, BAI Xiaohui, GUO Zixun, SHUI Penglang. Status and Prospects of Feature-based Detection Methods for Floating Targets on the Sea Surface (in English)[J]. Journal of Radars, 2020, 9(4): 684-714. doi: 10.12000/JR20084 |
[13] | LIU Ningbo, DONG Yunlong, WANG Guoqing, DING Hao, HUANG Yong, GUAN Jian, CHEN Xiaolong, HE You. Sea-detecting X-band Radar and Data Acquisition Program (in English)[J]. Journal of Radars, 2019, 8(5): 656-667. doi: 10.12000/JR19089 |
[14] | Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040 |
[15] | Wang Longgang, Li Lianlin. Short-range Radar Detection with (M, N)-Coprime Array Configurations(in English)[J]. Journal of Radars, 2016, 5(3): 244-253. doi: 10.12000/JR16022 |
[16] | Ding Hao, Dong Yunlong, Liu Ningbo, Wang Guoqing, Guan Jian. Overview and Prospects of Research on Sea Clutter Property Cognition[J]. Journal of Radars, 2016, 5(5): 499-516. doi: 10.12000/JR16069 |
[17] | Hu Cheng, Liu Changjiang, Zeng Tao. Bistatic Forward Scattering Radar Detection and Imaging[J]. Journal of Radars, 2016, 5(3): 229-243. doi: 10.12000/JR16058 |
[18] | Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125 |
[19] | Chen Xiao-long, Dong Yun-long, Li Xiu-you, Guan Jian. Modeling of Micromotion and Analysis of Properties of Rigid Marine Targets[J]. Journal of Radars, 2015, 4(6): 630-638. doi: 10.12000/JR15079 |
[20] | Yan Liang, Sun Pei-lin, Yi Lei, Han Ning, Tang Jun. Modeling of Compound Gaussian Sea Clutter Based on Inverse Gaussian Distribution[J]. Journal of Radars, 2013, 2(4): 461-465. doi: 10.3724/SP.J.1300.2013.13083 |
1. | 邢孟道,马鹏辉,楼屹杉,孙光才,林浩. 合成孔径雷达快速后向投影算法综述. 雷达学报. 2024(01): 1-22 . ![]() | |
2. | 周开心,刘丹阳,朱永锋,张永杰,周剑雄. 强杂波背景下调频步进DBS技术研究. 系统工程与电子技术. 2024(09): 2960-2967 . ![]() | |
3. | 匡辉,于海锋,高贺利,刘磊,刘杰,张润宁. 超高分辨率星载SAR系统多子带信号处理技术研究. 信号处理. 2022(04): 879-888 . ![]() | |
4. | 吕明久,陈文峰,徐芳,赵欣,杨军. 基于原子范数最小化的步进频率ISAR一维高分辨距离成像方法. 电子与信息学报. 2021(08): 2267-2275 . ![]() | |
5. | 张亦凡,黄平平,徐伟,谭维贤,高志奇. 星载斜视滑动聚束SAR子孔径成像处理算法研究. 信号处理. 2021(08): 1525-1532 . ![]() | |
6. | 吕明久,徐芳,赵丽,陈莉,陈浩. 载频不同分布方式下RSF波形稀疏重构性能分析. 空军预警学院学报. 2020(05): 319-324 . ![]() |