Volume 11 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
ZHOU Jingyi, ZHENG Shilie, YU Xianbin, et al. Reconfigurable mode vortex beam generation based on transmissive metasurfaces in the terahertz band[J]. Journal of Radars, 2022, 11(4): 728–735. doi: 10.12000/JR22021
Citation: ZHOU Jingyi, ZHENG Shilie, YU Xianbin, et al. Reconfigurable mode vortex beam generation based on transmissive metasurfaces in the terahertz band[J]. Journal of Radars, 2022, 11(4): 728–735. doi: 10.12000/JR22021

Reconfigurable Mode Vortex Beam Generation Based on Transmissive Metasurfaces in the Terahertz Band

DOI: 10.12000/JR22021
Funds:  This work is partly sponsored by Zhejiang Lab (2020LC0AD01)
More Information
  • Corresponding author: ZHENG Shilie, zhengsl@zju.edu.cn
  • Received Date: 2022-01-26
  • Rev Recd Date: 2022-04-14
  • Available Online: 2022-04-20
  • Publish Date: 2022-05-09
  • Combining Terahertz (THz) and Orbital Angular Momentum (OAM) technologies has great potential in high-speed wireless communication. Theoretically, OAM with different modes has strict orthogonality. The communication capacity of the system will improve significantly if OAM technology is applied to the THz communication system. Thus, the manner to generate a high-quality and dynamically controllable THz-OAM beam has been of significant interest to researchers in related fields. In this study, a double-layer transmissive metasurface that uses 3D printing as the processing method with a low cost and processing difficulty is designed. Note that the height of the unit cell for constructing the metasurface is configurable. As the height changes continuously, the phase of the transmitted wave covers 0~2${\pi }$ within 90~110 GHz, while the transmittance of the units is always higher than 88%. At 100 GHz, which is fed by a WR-10 standard waveguide horn antenna, OAM beams with different modes are generated by changing the relative rotation angle between the double-layer metasurface. The simulation results show that the metasurface antenna designed in this study can achieve OAM beams of $ l=1, \mathrm{2,3} $, and the two-dimensional amplitude and phase results correspond with the characteristics of the corresponding modes. When $ l=1,\mathrm{ }2,\mathrm{ }3 $, the OAM beam’s modal purity is 85.4%, 84.9%, and 83.4%, respectively. The measurement results include the results at frequency points of 90, 100, and 110 GHz. The results show that the OAM beam has a high-quality bandwidth of 20 GHz, which indicates that the metasurface antenna designed in this study has a wide working bandwidth at a high frequency and can be applied to high-frequency OAM communication.

     

  • loading
  • [1]
    JIA Shi, ZHANG Lu, WANG Shiwei, et al. 2 × 300 Gbit/s Line rate PS-64QAM-OFDM THz photonic-wireless transmission[J]. Journal of Lightwave Technology, 2020, 38(17): 4715–4721. doi: 10.1109/jlt.2020.2995702
    [2]
    DING Shenghui, LI Qi, LI Yunda, et al. Continuous-wave terahertz digital holography by use of a pyroelectric array camera[J]. Optics Letters, 2011, 36(11): 1993–1995. doi: 10.1364/OL.36.001993
    [3]
    BECK M, PLÖTZING T, MAUSSANG K, et al. High-speed THz spectroscopic imaging at ten kilohertz pixel rate with amplitude and phase contrast[J]. Optics Express, 2019, 27(8): 10866–10872. doi: 10.1364/OE.27.010866
    [4]
    MOON S R, SUNG M, LEE J K, et al. Cost-effective photonics-based THz wireless transmission using PAM-N signals in the 0.3 THz band[J]. Journal of Lightwave Technology, 2021, 39(2): 357–362. doi: 10.1109/JLT.2020.3032613
    [5]
    AlLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
    [6]
    YAO A M and PADGETT M J. Orbital angular momentum: Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161–204. doi: 10.1364/AOP.3.000161
    [7]
    魏旭立. 太赫兹特殊光束的产生及其在太赫兹通信和成像中的应用[D]. [博士论文], 华中科技大学, 2016.

    WEI Xuli. Generation of terahertz exotic beams and their application in terahertz communication and imaging systems[D]. [Ph. D. dissertation], Huazhong University of Science & Technology, 2016.
    [8]
    BAI Qiang, TENNANT A, and ALLEN B. Experimental circular phased array for generating OAM radio beams[J]. Electronics Letters, 2014, 50(20): 1414–1415. doi: 10.1049/el.2014.2860
    [9]
    TENNANT A and ALLEN B. Generation of OAM radio waves using circular time-switched array antenna[J]. Electronics Letters, 2012, 48(21): 1365–1366. doi: 10.1049/el.2012.2664
    [10]
    TURNBULL G A, ROBERTSON D A, SMITH G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127(4/6): 183–188. doi: 10.1016/0030-4018(96)00070-3
    [11]
    CHEN Yiling, ZHENG Shilie, LI Yue, et al. A Flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 1156–1158. doi: 10.1109/LAWP.2015.2497243
    [12]
    HUI Xiaonan, ZHENG Shilie, HU Yiping, et al. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 966–969. doi: 10.1109/LAWP.2014.2387431
    [13]
    李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    LI Xiong, MA Xiaoliang, and LUO Xiangang. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001
    [14]
    WU Gengbo, CHAN Kafai, QU Shiwei, et al. Orbital angular momentum (OAM) mode-reconfigurable discrete dielectric lens operating at 300 GHz[J]. IEEE Transactions on Terahertz Science and Technology, 2020, 10(5): 480–489. doi: 10.1109/TTHZ.2020.2984451
    [15]
    MIYAMOTO K, SUIZU K, AKIBA T, et al. Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate[J]. Applied Physics Letters, 2014, 104(26): 261104. doi: 10.1063/1.4886407
    [16]
    YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    [17]
    MENG Zankui, SHI Yan, WEI Wenyue, et al. Graphene- based metamaterial transmitarray antenna design for the generation of tunable orbital angular momentum vortex electromagnetic waves[J]. Optical Materials Express, 2019, 9(9): 3709–3716. doi: 10.1364/OME.9.003709
    [18]
    WANG Ling, YANG Yang, LI Shufang, et al. Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide[J]. IEEE Photonics Journal, 2020, 12(3): 4600712. doi: 10.1109/JPHOT.2020.3000779
    [19]
    WANG Ling, YANG Yang, DENG Li, et al. Vanadium dioxide embedded frequency reconfigurable metasurface for multi-dimensional multiplexing of terahertz communication[J]. Journal of Physics D:Applied Physics, 2021, 54(25): 255003. doi: 10.1088/1361-6463/abf166
    [20]
    YANG Qili, WANG Yan, LIANG Lanju, et al. Broadband transparent terahertz vortex beam generator based on thermally tunable geometric metasurface[J]. Optical Materials, 2021, 121: 111574. doi: 10.1016/j.optmat.2021.111574
    [21]
    FORMLABS[EB/OL]. https://formlabs.com, 2020.
    [22]
    MAHMOULI F E and WALKER S. Orbital angular momentum generation in a 60 GHz wireless radio channel[C]. 2012 20th Telecommunications Forum (TELFOR). Belgrade, Serbia, 2012: 315–318.
    [23]
    WANG Yicheng, ZHANG Huajin, YU Haohai, et al. Light propagation in an optically active plate with topological charge[J]. Applied Physics Letters, 2012, 101(17): 171114. doi: 10.1063/1.4764546
    [24]
    SUN Changzheng, ZHANG Juan, XIONG Bing, et al. Analysis of OAM mode purity of integrated optical vortex beam emitters[J]. IEEE Photonics Journal, 2017, 9(1): 1–7. doi: 10.1109/JPHOT.2017.265272
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1555) PDF downloads(192) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint