Ren Bo, Shi Longfei, Wang Guoyu. Polarimetric Analysis of the Interference from Base Stations to UHF-band Radar[J]. Journal of Radars, 2016, 5(2): 164-173. doi: 10.12000/JR15134
Citation: Wang Longgang, Li Lianlin. Short-range Radar Detection with (M, N)-Coprime Array Configurations(in English)[J]. Journal of Radars, 2016, 5(3): 244-253. doi: 10.12000/JR16022

Short-range Radar Detection with (M, N)-Coprime Array Configurations(in English)

DOI: 10.12000/JR16022
Funds:

The National Natural Science Foundation of China (61471006).

  • Received Date: 2016-01-27
  • Rev Recd Date: 2016-05-17
  • Publish Date: 2016-06-28
  • An (M, N)-coprime array comprises two well-organized subarrays: an M-element and an N-element. This sparse array configuration is capable of resolving a number of remote sources up to O(MN) solely with the use of an M + N - 1 sensors, which allows the identification of more targets with fewer transceivers while maintaining high resolution. In this way, the coprime array theory can significantly help to simplify the configuration of traditional transceiver systems. However, to date, the coprime array approaches reported in the literature rely strongly on far-field approximation, which is associated with significant error when dealing with the problem of short-range radar detection because the probed objects are nearby the sensors. To solve this problem, we extend the theory of the standard coprime array to short-range detection, whereby the probed object is located NOT far away from the sensors (either the transmitter or receiver). We demonstrate that the (M, N)-coprime array configuration can retrieve the object spectrum over [-2k0, 2k0] with a resolution of 4k0/MN, where k0 denotes the free space wavenumber and  is a scenario-dependent factor. As a consequence, the (M, N)-coprime array allows for the resolution of O(MN) objects nearby sensors, with a spatial resolution of /4. We also examined the performance of the coprime array with respect to the through-wall-imaging problem. Finally, we verified the usefulness of the coprime array for short-range radar detection with a selected number of numerical experiments.

     

  • [1]
    Vaidyanathan P P and Pal P. Sparse sensing with co-prime samples and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573-586.
    [2]
    Vaidyanathan P P and Pal P. Theory of sparse coprime sensing in multiple dimensions[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3592-3608.
    [3]
    Qin S, Zhang Y D, and Amin M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377-1390.
    [4]
    Tan Z, Eldar Y C, and Nehorai A. Direction of arrival estimation using co-prime arrays: a super resolution viewpoint[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5565-5576.
    [5]
    Tan Z and Nehorai A. Sparse direction of arrival estimation using co-prime arrays with off-grid targets[J]. IEEE Signal Processing Letters, 2014, 21(1): 26-29.
    [6]
    Wang L and Li L. Through-the-wall target localization and tracking using co-prime array[C]. The 5th Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, 2015.
    [7]
    Chew W C. Waves and Fields in Inhomogeneous Media[M]. Wiley-IEEE Press, 1995: 20-23.
    [8]
    Li L, Zhang W, and Li F. A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 423-431.
  • Relative Articles

    [1]LI Yuxi, ZHU Ruichao, SUI Sai, JIA Yuxiang, DING Chang, HAN Yajuan, QU Shaobo, WANG Jiafu. Dynamic Electromagnetic Control Technology and its Application Based on Metasurface[J]. Journal of Radars. doi: 10.12000/JR24259
    [2]CHEN Shaonan, GU Jiaming, XU Chao, SUN Yimiao, WANG Siran, CHEN Zhanye, LIU Shuo, LI Huidong, DAI Junyan, HE Yuan, CHENG Qiang. Fall Feature Simulation and Wi-Fi Sensing Dataset Construction Based on Time-Domain Digital Coding Metasurface[J]. Journal of Radars. doi: 10.12000/JR24247
    [3]ZHOU Hongcheng, YU Xiaoran, WANG Yu, YAN Zhongming. Research Progress of Electrically Controlled Reconfigurable Polarization Manipulation Using Metasurface[J]. Journal of Radars, 2024, 13(3): 696-713. doi: 10.12000/JR23230
    [4]ZHOU Qunyan, WANG Siran, DAI Junyan, CHENG Qiang. Simultaneous Direction of Arrival Estimation and Radar Cross-section Reduction Based on Space-time-coding Digital Metasurfaces[J]. Journal of Radars, 2024, 13(1): 150-159. doi: 10.12000/JR23216
    [5]XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186
    [6]ZHANG Liwen, PAN Jian, ZHANG Youcheng, CHEN Yuanpei, MA Zhe, HUANG Xuhui, SUN Kewu. Capturing Temporal-dependence in Radar Echo for Spatial-temporal Sparse Target Detection[J]. Journal of Radars, 2023, 12(2): 356-375. doi: 10.12000/JR22228
    [7]WANG Bingnan, ZHAO Juanying, LI Wei, SHI Ruihua, XIANG Maosheng, ZHOU Yu, JIA Jianjun. Array Synthetic Aperture Ladar with High Spatial Resolution Technology[J]. Journal of Radars, 2022, 11(6): 1110-1118. doi: 10.12000/JR22204
    [8]JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167
    [9]YANG Huanhuan, CAO Xiangyu, GAO Jun, LI Tong, LI Sijia, CONG Lili, ZHAO Xia. Recent Advances in Reconfigurable Metasurfaces and Their Applications[J]. Journal of Radars, 2021, 10(2): 206-219. doi: 10.12000/JR20137
    [10]LIU Zhangmeng, YUAN Shuo, KANG Shiqian. Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train[J]. Journal of Radars, 2021, 10(4): 559-570. doi: 10.12000/JR21031
    [11]WANG Ruichuan, WANG Yanfei. Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network[J]. Journal of Radars, 2021, 10(4): 516-530. doi: 10.12000/JR21080
    [12]FANG Zuqi, CHENG Qiang, CUI Tiejun. Nonlinear Quasi-Bessel Beam Generation Based on the Time-domain Digital-Coding Metasurface[J]. Journal of Radars, 2021, 10(2): 267-273. doi: 10.12000/JR21043
    [13]YASIR Saifullah, YANG Guomin, XU Feng. A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering[J]. Journal of Radars, 2021, 10(3): 382-390. doi: 10.12000/JR21061
    [14]HU Qi, CHEN Ke, ZHENG Yilin, XU Zhiyuan, WANG Jian, ZHAO Junming, FENG Yijun. Time-varying Polarization-converting Programmable Metasurface and Its Application in Wireless Communication System[J]. Journal of Radars, 2021, 10(2): 304-312. doi: 10.12000/JR21042
    [15]LI Shangyang, FU Shilei, XU Feng. DNN-based Intelligent Beamforming on a Programmable Metasurface[J]. Journal of Radars, 2021, 10(2): 259-266. doi: 10.12000/JR21039
    [16]Liu Junfeng, Liu Shuo, Fu Xiaojian, Cui Tiejun. Terahertz Information Metamaterials and Metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55. doi: 10.12000/JR17100
    [17]Liu Wei-jian, Wang Li-cai, Di Yuan-shui, Jian Tao, Xie Dang, Wang Yong-liang. Adaptive Energy Detector and Its Application for Mismatched Signal Detection(in English)[J]. Journal of Radars, 2015, 4(2): 149-159. doi: 10.12000/JR14132
    [18]Feng Fan, Dang Hong-xing, Tan Xiao-min. Study on Adaptive Digital Beamforming for Spaceborne SAR Based on Capon Spatial Spectrum Estimation[J]. Journal of Radars, 2014, 3(1): 53-60. doi: 10.3724/SP.J.1300.2014.13131
    [19]Huang Chuan-lu, Chao Kun, Mao Yun-zhi. Error Self-calibration Method in Spatial Spectrum Estimation[J]. Journal of Radars, 2014, 3(5): 518-523. doi: 10.3724/SP.J.1300.2014.13147
    [20]Li Zi-qi, Mei Jin-jie, Hu Deng-oeng, Shen Xu-chi, Li Xiao-bai. Peak-to-Average Power Ratio Reduction for Integration of Radar and Communication Systems Based on OFDM Signals with Block Golay Coding[J]. Journal of Radars, 2014, 3(5): 548-555. doi: 10.3724/SP.J.1300.2014.14059
  • Cited by

    Periodical cited type(1)

    1. 逄爽,曾旸,杨琪,邓彬,王宏强. Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band. Chinese Physics B. 2022(06): 872-877 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.6 %FULLTEXT: 30.6 %META: 62.2 %META: 62.2 %PDF: 7.3 %PDF: 7.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.6 %其他: 6.6 %其他: 1.4 %其他: 1.4 %Boiling Springs: 0.1 %Boiling Springs: 0.1 %Botswana: 0.1 %Botswana: 0.1 %Burlington: 0.1 %Burlington: 0.1 %Canada: 0.1 %Canada: 0.1 %Canton: 0.1 %Canton: 0.1 %China: 0.8 %China: 0.8 %Egypt: 0.1 %Egypt: 0.1 %France: 0.4 %France: 0.4 %Greece: 0.1 %Greece: 0.1 %Herndon: 0.0 %Herndon: 0.0 %Hong Kong, China: 0.1 %Hong Kong, China: 0.1 %Howard: 0.1 %Howard: 0.1 %India: 0.0 %India: 0.0 %Iran (ISLAMIC Republic Of): 0.2 %Iran (ISLAMIC Republic Of): 0.2 %Italy: 0.2 %Italy: 0.2 %Korea Republic of: 0.4 %Korea Republic of: 0.4 %Malvern: 0.0 %Malvern: 0.0 %Matale: 0.2 %Matale: 0.2 %Palo Alto: 0.1 %Palo Alto: 0.1 %Pathum Thani: 0.5 %Pathum Thani: 0.5 %Portugal: 0.1 %Portugal: 0.1 %San Mateo: 0.1 %San Mateo: 0.1 %Singapore: 0.1 %Singapore: 0.1 %Taichung: 0.0 %Taichung: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Thailand: 0.1 %Thailand: 0.1 %Turkey: 0.1 %Turkey: 0.1 %United States: 0.4 %United States: 0.4 %Viet Nam: 0.1 %Viet Nam: 0.1 %[]: 2.5 %[]: 2.5 %万隆: 0.3 %万隆: 0.3 %三亚: 0.2 %三亚: 0.2 %上海: 2.2 %上海: 2.2 %东京: 0.4 %东京: 0.4 %东京都: 0.0 %东京都: 0.0 %东莞: 0.2 %东莞: 0.2 %中卫: 0.1 %中卫: 0.1 %临汾: 0.4 %临汾: 0.4 %丹东: 0.0 %丹东: 0.0 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %伦敦: 0.1 %伦敦: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.1 %兰辛: 0.1 %凤凰城: 0.1 %凤凰城: 0.1 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %北京: 8.7 %北京: 8.7 %匹兹堡: 0.1 %匹兹堡: 0.1 %十堰: 0.1 %十堰: 0.1 %南京: 2.6 %南京: 2.6 %南昌: 0.1 %南昌: 0.1 %南通: 0.0 %南通: 0.0 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.1 %厦门: 0.1 %台北: 0.3 %台北: 0.3 %台州: 0.0 %台州: 0.0 %台湾: 0.0 %台湾: 0.0 %合肥: 0.9 %合肥: 0.9 %吉隆坡: 0.1 %吉隆坡: 0.1 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.3 %哈尔滨: 0.3 %哥伦布: 0.0 %哥伦布: 0.0 %喀什: 0.0 %喀什: 0.0 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.0 %天津: 0.0 %太原: 0.6 %太原: 0.6 %奥胡斯: 0.3 %奥胡斯: 0.3 %奥马哈: 0.1 %奥马哈: 0.1 %孟买: 0.1 %孟买: 0.1 %宁波: 0.1 %宁波: 0.1 %安庆: 0.1 %安庆: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.3 %宣城: 0.3 %巴中: 0.1 %巴中: 0.1 %巴黎: 0.1 %巴黎: 0.1 %布洛涅-比扬古: 0.1 %布洛涅-比扬古: 0.1 %常德: 0.0 %常德: 0.0 %广州: 0.8 %广州: 0.8 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %开封: 0.1 %开封: 0.1 %张家口: 0.3 %张家口: 0.3 %张家界: 0.1 %张家界: 0.1 %德罕: 0.1 %德罕: 0.1 %意法半: 0.0 %意法半: 0.0 %成都: 0.8 %成都: 0.8 %扬州: 0.1 %扬州: 0.1 %拉贾斯坦: 0.1 %拉贾斯坦: 0.1 %新乡: 0.1 %新乡: 0.1 %新余: 0.1 %新余: 0.1 %新加坡: 0.2 %新加坡: 0.2 %无锡: 0.1 %无锡: 0.1 %昆明: 0.4 %昆明: 0.4 %昌吉回族自治州: 0.0 %昌吉回族自治州: 0.0 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.0 %朝阳: 0.0 %本那比: 0.1 %本那比: 0.1 %杭州: 1.0 %杭州: 1.0 %查尔斯顿: 0.1 %查尔斯顿: 0.1 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.2 %桂林: 0.2 %武汉: 2.0 %武汉: 2.0 %毕节: 0.0 %毕节: 0.0 %汉中: 0.1 %汉中: 0.1 %汕头: 0.0 %汕头: 0.0 %江门: 0.0 %江门: 0.0 %沈阳: 0.2 %沈阳: 0.2 %沙田: 0.1 %沙田: 0.1 %法兰克福: 0.4 %法兰克福: 0.4 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.2 %海口: 0.2 %淮南: 0.0 %淮南: 0.0 %深圳: 1.0 %深圳: 1.0 %温州: 0.0 %温州: 0.0 %渭南: 0.7 %渭南: 0.7 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %湛江: 0.1 %湛江: 0.1 %漯河: 0.3 %漯河: 0.3 %烟台: 0.0 %烟台: 0.0 %瓦拉纳西县: 0.1 %瓦拉纳西县: 0.1 %石家庄: 0.1 %石家庄: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.4 %纽约: 0.4 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %肇庆: 0.1 %肇庆: 0.1 %芒廷维尤: 28.4 %芒廷维尤: 28.4 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.8 %苏州: 0.8 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.1 %衡水: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 16.6 %西宁: 16.6 %西安: 2.4 %西安: 2.4 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.8 %运城: 0.8 %连云港: 0.1 %连云港: 0.1 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.1 %郑州: 0.1 %都伯林: 0.2 %都伯林: 0.2 %重庆: 0.3 %重庆: 0.3 %长春: 0.0 %长春: 0.0 %长沙: 0.6 %长沙: 0.6 %长治: 0.3 %长治: 0.3 %青岛: 0.1 %青岛: 0.1 %香港: 0.4 %香港: 0.4 %香港特别行政区: 0.5 %香港特别行政区: 0.5 %马哈拉施特拉: 0.0 %马哈拉施特拉: 0.0 %马鞍山: 0.0 %马鞍山: 0.0 %鹰潭: 0.0 %鹰潭: 0.0 %其他其他Boiling SpringsBotswanaBurlingtonCanadaCantonChinaEgyptFranceGreeceHerndonHong Kong, ChinaHowardIndiaIran (ISLAMIC Republic Of)ItalyKorea Republic ofMalvernMatalePalo AltoPathum ThaniPortugalSan MateoSingaporeTaichungTaiwan, ChinaThailandTurkeyUnited StatesViet Nam[]万隆三亚上海东京东京都东莞中卫临汾丹东乌鲁木齐伊斯坦布尔伦敦佛山保定兰州兰辛凤凰城加利福尼亚州北京匹兹堡十堰南京南昌南通卡拉奇厦门台北台州台湾合肥吉隆坡呼和浩特哈尔滨哥伦布喀什圣彼得堡大庆大连天津太原奥胡斯奥马哈孟买宁波安庆安康宣城巴中巴黎布洛涅-比扬古常德广州库比蒂诺开封张家口张家界德罕意法半成都扬州拉贾斯坦新乡新余新加坡无锡昆明昌吉回族自治州晋城朝阳本那比杭州查尔斯顿株洲格兰特县桂林武汉毕节汉中汕头江门沈阳沙田法兰克福泰米尔纳德洛阳济南海口淮南深圳温州渭南湖州湘潭湛江漯河烟台瓦拉纳西县石家庄福州秦皇岛纽约美国伊利诺斯芝加哥肇庆芒廷维尤芝加哥苏州蚌埠衡水衢州西宁西安贵阳赣州运城连云港邢台邯郸郑州都伯林重庆长春长沙长治青岛香港香港特别行政区马哈拉施特拉马鞍山鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3069) PDF downloads(1455) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint