Citation: | Wang Longgang, Li Lianlin. Short-range Radar Detection with (M, N)-Coprime Array Configurations(in English)[J]. Journal of Radars, 2016, 5(3): 244-253. doi: 10.12000/JR16022 |
An (M, N)-coprime array comprises two well-organized subarrays: an M-element and an N-element. This sparse array configuration is capable of resolving a number of remote sources up to O(MN) solely with the use of an M + N - 1 sensors, which allows the identification of more targets with fewer transceivers while maintaining high resolution. In this way, the coprime array theory can significantly help to simplify the configuration of traditional transceiver systems. However, to date, the coprime array approaches reported in the literature rely strongly on far-field approximation, which is associated with significant error when dealing with the problem of short-range radar detection because the probed objects are nearby the sensors. To solve this problem, we extend the theory of the standard coprime array to short-range detection, whereby the probed object is located NOT far away from the sensors (either the transmitter or receiver). We demonstrate that the (M, N)-coprime array configuration can retrieve the object spectrum over [-2k0, 2k0] with a resolution of 4k0/MN, where k0 denotes the free space wavenumber and is a scenario-dependent factor. As a consequence, the (M, N)-coprime array allows for the resolution of O(MN) objects nearby sensors, with a spatial resolution of /4. We also examined the performance of the coprime array with respect to the through-wall-imaging problem. Finally, we verified the usefulness of the coprime array for short-range radar detection with a selected number of numerical experiments.
[1] |
Vaidyanathan P P and Pal P. Sparse sensing with co-prime samples and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573-586.
|
[2] |
Vaidyanathan P P and Pal P. Theory of sparse coprime sensing in multiple dimensions[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3592-3608.
|
[3] |
Qin S, Zhang Y D, and Amin M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377-1390.
|
[4] |
Tan Z, Eldar Y C, and Nehorai A. Direction of arrival estimation using co-prime arrays: a super resolution viewpoint[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5565-5576.
|
[5] |
Tan Z and Nehorai A. Sparse direction of arrival estimation using co-prime arrays with off-grid targets[J]. IEEE Signal Processing Letters, 2014, 21(1): 26-29.
|
[6] |
Wang L and Li L. Through-the-wall target localization and tracking using co-prime array[C]. The 5th Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, 2015.
|
[7] |
Chew W C. Waves and Fields in Inhomogeneous Media[M]. Wiley-IEEE Press, 1995: 20-23.
|
[8] |
Li L, Zhang W, and Li F. A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 423-431.
|
[1] | LI Yuxi, ZHU Ruichao, SUI Sai, JIA Yuxiang, DING Chang, HAN Yajuan, QU Shaobo, WANG Jiafu. Dynamic Electromagnetic Control Technology and its Application Based on Metasurface[J]. Journal of Radars. doi: 10.12000/JR24259 |
[2] | CHEN Shaonan, GU Jiaming, XU Chao, SUN Yimiao, WANG Siran, CHEN Zhanye, LIU Shuo, LI Huidong, DAI Junyan, HE Yuan, CHENG Qiang. Fall Feature Simulation and Wi-Fi Sensing Dataset Construction Based on Time-Domain Digital Coding Metasurface[J]. Journal of Radars. doi: 10.12000/JR24247 |
[3] | ZHOU Hongcheng, YU Xiaoran, WANG Yu, YAN Zhongming. Research Progress of Electrically Controlled Reconfigurable Polarization Manipulation Using Metasurface[J]. Journal of Radars, 2024, 13(3): 696-713. doi: 10.12000/JR23230 |
[4] | ZHOU Qunyan, WANG Siran, DAI Junyan, CHENG Qiang. Simultaneous Direction of Arrival Estimation and Radar Cross-section Reduction Based on Space-time-coding Digital Metasurfaces[J]. Journal of Radars, 2024, 13(1): 150-159. doi: 10.12000/JR23216 |
[5] | XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186 |
[6] | ZHANG Liwen, PAN Jian, ZHANG Youcheng, CHEN Yuanpei, MA Zhe, HUANG Xuhui, SUN Kewu. Capturing Temporal-dependence in Radar Echo for Spatial-temporal Sparse Target Detection[J]. Journal of Radars, 2023, 12(2): 356-375. doi: 10.12000/JR22228 |
[7] | WANG Bingnan, ZHAO Juanying, LI Wei, SHI Ruihua, XIANG Maosheng, ZHOU Yu, JIA Jianjun. Array Synthetic Aperture Ladar with High Spatial Resolution Technology[J]. Journal of Radars, 2022, 11(6): 1110-1118. doi: 10.12000/JR22204 |
[8] | JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167 |
[9] | YANG Huanhuan, CAO Xiangyu, GAO Jun, LI Tong, LI Sijia, CONG Lili, ZHAO Xia. Recent Advances in Reconfigurable Metasurfaces and Their Applications[J]. Journal of Radars, 2021, 10(2): 206-219. doi: 10.12000/JR20137 |
[10] | LIU Zhangmeng, YUAN Shuo, KANG Shiqian. Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train[J]. Journal of Radars, 2021, 10(4): 559-570. doi: 10.12000/JR21031 |
[11] | WANG Ruichuan, WANG Yanfei. Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network[J]. Journal of Radars, 2021, 10(4): 516-530. doi: 10.12000/JR21080 |
[12] | FANG Zuqi, CHENG Qiang, CUI Tiejun. Nonlinear Quasi-Bessel Beam Generation Based on the Time-domain Digital-Coding Metasurface[J]. Journal of Radars, 2021, 10(2): 267-273. doi: 10.12000/JR21043 |
[13] | YASIR Saifullah, YANG Guomin, XU Feng. A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering[J]. Journal of Radars, 2021, 10(3): 382-390. doi: 10.12000/JR21061 |
[14] | HU Qi, CHEN Ke, ZHENG Yilin, XU Zhiyuan, WANG Jian, ZHAO Junming, FENG Yijun. Time-varying Polarization-converting Programmable Metasurface and Its Application in Wireless Communication System[J]. Journal of Radars, 2021, 10(2): 304-312. doi: 10.12000/JR21042 |
[15] | LI Shangyang, FU Shilei, XU Feng. DNN-based Intelligent Beamforming on a Programmable Metasurface[J]. Journal of Radars, 2021, 10(2): 259-266. doi: 10.12000/JR21039 |
[16] | Liu Junfeng, Liu Shuo, Fu Xiaojian, Cui Tiejun. Terahertz Information Metamaterials and Metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55. doi: 10.12000/JR17100 |
[17] | Liu Wei-jian, Wang Li-cai, Di Yuan-shui, Jian Tao, Xie Dang, Wang Yong-liang. Adaptive Energy Detector and Its Application for Mismatched Signal Detection(in English)[J]. Journal of Radars, 2015, 4(2): 149-159. doi: 10.12000/JR14132 |
[18] | Feng Fan, Dang Hong-xing, Tan Xiao-min. Study on Adaptive Digital Beamforming for Spaceborne SAR Based on Capon Spatial Spectrum Estimation[J]. Journal of Radars, 2014, 3(1): 53-60. doi: 10.3724/SP.J.1300.2014.13131 |
[19] | Huang Chuan-lu, Chao Kun, Mao Yun-zhi. Error Self-calibration Method in Spatial Spectrum Estimation[J]. Journal of Radars, 2014, 3(5): 518-523. doi: 10.3724/SP.J.1300.2014.13147 |
[20] | Li Zi-qi, Mei Jin-jie, Hu Deng-oeng, Shen Xu-chi, Li Xiao-bai. Peak-to-Average Power Ratio Reduction for Integration of Radar and Communication Systems Based on OFDM Signals with Block Golay Coding[J]. Journal of Radars, 2014, 3(5): 548-555. doi: 10.3724/SP.J.1300.2014.14059 |
1. | 逄爽,曾旸,杨琪,邓彬,王宏强. Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band. Chinese Physics B. 2022(06): 872-877 . ![]() |