Volume 10 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
HU Qi, CHEN Ke, ZHENG Yilin, et al. Time-varying polarization-converting programmable metasurface and its application in wireless communication system[J]. Journal of Radars, 2021, 10(2): 304–312. doi: 10.12000/JR21042
Citation: HU Qi, CHEN Ke, ZHENG Yilin, et al. Time-varying polarization-converting programmable metasurface and its application in wireless communication system[J]. Journal of Radars, 2021, 10(2): 304–312. doi: 10.12000/JR21042

Time-varying Polarization-converting Programmable Metasurface and Its Application in Wireless Communication System

doi: 10.12000/JR21042
Funds:  The National Key Research and Development Program of China (2017YFA0700201), The National Natural Science Foundation of China (91963128, 62071215, 61801207, 61731010), The Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, The Fundamental Research Funds for the Central Universities and Jiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Wave
More Information
  • Corresponding author: CHEN Ke, ke.chen@nju.edu.cn; FENG Yijun, yjfeng@nju.edu.cn
  • Received Date: 2021-04-05
  • Rev Recd Date: 2021-04-17
  • Available Online: 2021-04-25
  • Publish Date: 2021-04-28
  • We propose a general scheme to manipulate fundamental and harmonic frequencies simultaneously in a nonlinear fashion based on time-varying polarization-converting programmable metasurface. Co-polarization and cross-polarization reflection can be switched dynamically at an operating frequency of 2.4 GHz by loading metasurface with PIN (p-i-n) diodes. As a result, by adjusting a duty cycle and frequency of square-wave-type time-varying signals used for time-varying modulation, energy distribution and frequency shift in the frequency domain can be manipulated. To verify this, we fabricated a sample and conducted experiments, and the results agreed well with the theoretical prediction, confirming the design principle. Furthermore, we propose a wireless communication system based on binary amplitude-shift keying as an example of its practical application. The proposed one eliminates the need for complex device components on the emitter because the information is directly modulated onto the metasurface, greatly simplifying the traditional system. The proposed system can achieve a maximum transmission data rate of up to 625 kbps in experiments. The proposed metasurface paves a new way for time-varying manipulation of microwave and can have potential in real-world applications, such as next-generation communication and high-resolution imaging.

     

  • loading
  • [1]
    YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    [2]
    DING Guowen, CHEN Ke, LUO Xinyao, et al. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion[J]. Physical Review Applied, 2019, 11(4): 044043. doi: 10.1103/PhysRevApplied.11.044043
    [3]
    TSENG M L, HSIAO H H, CHU C H, et al. Metalenses: Advances and applications[J]. Advanced Optical Materials, 2018, 6(18): 1800554. doi: 10.1002/adom.201800554
    [4]
    CHEN Ke, FENG Yijun, MONTICONE F, et al. A reconfigurable active huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422
    [5]
    CHEN Ke, ZHANG Na, DING Guowen, et al. Active anisotropic coding metasurface with independent real-time reconfigurability for dual polarized waves[J]. Advanced Materials Technologies, 2020, 5(2): 1900930. doi: 10.1002/admt.201900930
    [6]
    ZHANG Na, CHEN Ke, ZHENG Yilin, et al. Programmable coding metasurface for dual-band independent real-time beam control[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(1): 20–28. doi: 10.1109/jetcas.2020.2973310
    [7]
    RATNI B, DE LUSTRAC A, PIAU G P, et al. Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface[J]. Applied Physics Letters, 2017, 111(21): 214101. doi: 10.1063/1.4998556
    [8]
    MA Xiaoliang, PAN Wenbo, HUANG Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945–949. doi: 10.1002/adom.201400212
    [9]
    CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
    [10]
    TYMCHENKO M, GOMEZ-DIAZ J S, LEE J, et al. Gradient nonlinear pancharatnam-berry metasurfaces[J]. Physical Review Letters, 2015, 115(20): 207403. doi: 10.1103/PhysRevLett.115.207403
    [11]
    WU Zhanni and GRBIC A. Serrodyne frequency translation using time-modulated metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1599–1606. doi: 10.1109/tap.2019.2943712
    [12]
    LIU Mingkai, KOZYREV A B, and SHADRIVOV I V. Time-varying metasurfaces for broadband spectral camouflage[J]. Physical Review Applied, 2019, 12(5): 054052. doi: 10.1103/PhysRevApplied.12.054052
    [13]
    RAMACCIA D, SOUNAS D L, ALÙ A, et al. Phase-induced frequency conversion and doppler effect with time-modulated metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1607–1617. doi: 10.1109/tap.2019.2952469
    [14]
    ZHANG Cheng, YANG Jin, YANG Liuxi, et al. Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics[J]. Nanophotonics, 2020, 9(9): 2771–2781. doi: 10.1515/nanoph-2019-0538
    [15]
    ZHAO Hanting, SHUANG Ya, WEI Menglin, et al. Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals[J]. Nature Communications, 2020, 11(1): 3926. doi: 10.1038/s41467-020-17808-y
    [16]
    SHUANG Ya, ZHAO Hanting, JI Wei, et al. Programmable high-order OAM-carrying beams for direct-modulation wireless communications[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(1): 29–37. doi: 10.1109/jetcas.2020.2973391
    [17]
    HU Jingzhi, ZHANG Hongliang, DI Boya, et al. Reconfigurable intelligent surface based RF sensing: Design, optimization, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2700–2716. doi: 10.1109/jsac.2020.3007041
    [18]
    ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135
    [19]
    DAI Linglong, WANG Bichai, WANG Min, et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results[J]. IEEE Access, 2020, 8: 45913–45923. doi: 10.1109/access.2020.2977772
    [20]
    TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. Programmable metasurface-based RF chain-free 8PSK wireless transmitter[J]. Electronics Letters, 2019, 55(7): 417–420. doi: 10.1049/el.2019.0400
    [21]
    ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1303) PDF downloads(214) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint