| Citation: | HU Qi, CHEN Ke, ZHENG Yilin, et al. Time-varying polarization-converting programmable metasurface and its application in wireless communication system[J]. Journal of Radars, 2021, 10(2): 304–312. doi: 10.12000/JR21042 | 
	                | [1] | 
					 YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi:  10.1126/science.1210713 
						
					 | 
			
| [2] | 
					 DING Guowen, CHEN Ke, LUO Xinyao, et al. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion[J]. Physical Review Applied, 2019, 11(4): 044043. doi:  10.1103/PhysRevApplied.11.044043 
						
					 | 
			
| [3] | 
					 TSENG M L, HSIAO H H, CHU C H, et al. Metalenses: Advances and applications[J]. Advanced Optical Materials, 2018, 6(18): 1800554. doi:  10.1002/adom.201800554 
						
					 | 
			
| [4] | 
					 CHEN Ke, FENG Yijun, MONTICONE F, et al. A reconfigurable active huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi:  10.1002/adma.201606422 
						
					 | 
			
| [5] | 
					 CHEN Ke, ZHANG Na, DING Guowen, et al. Active anisotropic coding metasurface with independent real-time reconfigurability for dual polarized waves[J]. Advanced Materials Technologies, 2020, 5(2): 1900930. doi:  10.1002/admt.201900930 
						
					 | 
			
| [6] | 
					 ZHANG Na, CHEN Ke, ZHENG Yilin, et al. Programmable coding metasurface for dual-band independent real-time beam control[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(1): 20–28. doi:  10.1109/jetcas.2020.2973310 
						
					 | 
			
| [7] | 
					 RATNI B, DE LUSTRAC A, PIAU G P, et al. Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface[J]. Applied Physics Letters, 2017, 111(21): 214101. doi:  10.1063/1.4998556 
						
					 | 
			
| [8] | 
					 MA Xiaoliang, PAN Wenbo, HUANG Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945–949. doi:  10.1002/adom.201400212 
						
					 | 
			
| [9] | 
					 CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi:  10.1038/lsa.2014.99 
						
					 | 
			
| [10] | 
					 TYMCHENKO M, GOMEZ-DIAZ J S, LEE J, et al. Gradient nonlinear pancharatnam-berry metasurfaces[J]. Physical Review Letters, 2015, 115(20): 207403. doi:  10.1103/PhysRevLett.115.207403 
						
					 | 
			
| [11] | 
					 WU Zhanni and GRBIC A. Serrodyne frequency translation using time-modulated metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1599–1606. doi:  10.1109/tap.2019.2943712 
						
					 | 
			
| [12] | 
					 LIU Mingkai, KOZYREV A B, and SHADRIVOV I V. Time-varying metasurfaces for broadband spectral camouflage[J]. Physical Review Applied, 2019, 12(5): 054052. doi:  10.1103/PhysRevApplied.12.054052 
						
					 | 
			
| [13] | 
					 RAMACCIA D, SOUNAS D L, ALÙ A, et al. Phase-induced frequency conversion and doppler effect with time-modulated metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1607–1617. doi:  10.1109/tap.2019.2952469 
						
					 | 
			
| [14] | 
					 ZHANG Cheng, YANG Jin, YANG Liuxi, et al. Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics[J]. Nanophotonics, 2020, 9(9): 2771–2781. doi:  10.1515/nanoph-2019-0538 
						
					 | 
			
| [15] | 
					 ZHAO Hanting, SHUANG Ya, WEI Menglin, et al. Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals[J]. Nature Communications, 2020, 11(1): 3926. doi:  10.1038/s41467-020-17808-y 
						
					 | 
			
| [16] | 
					 SHUANG Ya, ZHAO Hanting, JI Wei, et al. Programmable high-order OAM-carrying beams for direct-modulation wireless communications[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(1): 29–37. doi:  10.1109/jetcas.2020.2973391 
						
					 | 
			
| [17] | 
					 HU Jingzhi, ZHANG Hongliang, DI Boya, et al. Reconfigurable intelligent surface based RF sensing: Design, optimization, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2700–2716. doi:  10.1109/jsac.2020.3007041 
						
					 | 
			
| [18] | 
					 ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi:  10.1093/nsr/nwy135 
						
					 | 
			
| [19] | 
					 DAI Linglong, WANG Bichai, WANG Min, et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results[J]. IEEE Access, 2020, 8: 45913–45923. doi:  10.1109/access.2020.2977772 
						
					 | 
			
| [20] | 
					 TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. Programmable metasurface-based RF chain-free 8PSK wireless transmitter[J]. Electronics Letters, 2019, 55(7): 417–420. doi:  10.1049/el.2019.0400 
						
					 | 
			
| [21] | 
					 ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi:  10.1038/s41467-018-06802-0 
						
					 |