Citation: | ZHOU Qunyan, WANG Siran, DAI Junyan, et al. Simultaneous direction of arrival estimation and radar cross-section reduction based on space-time-coding digital metasurfaces[J]. Journal of Radars, 2024, 13(1): 150–159. doi: 10.12000/JR23216 |
[1] |
BENCHEIKH M L, WANG Yide, and HE Hongyang. Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar[J]. Signal Processing, 2010, 90(9): 2723–2730. doi: 10.1016/j.sigpro.2010.03.023
|
[2] |
ENDER J H G. On compressive sensing applied to radar[J]. Signal Processing, 2010, 90(5): 1402–1414. doi: 10.1016/j.sigpro.2009.11.009
|
[3] |
HUANG Hongji, YANG Jie, HUANG Hao, et al. Deep learning for super-resolution channel estimation and DOA Estimation based massive MIMO system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8549–8560. doi: 10.1109/TVT.2018.2851783
|
[4] |
PUCCI L, PAOLINI E, and GIORGETTI A. System-level analysis of joint sensing and communication based on 5G new radio[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2043–2055. doi: 10.1109/JSAC.2022.3155522
|
[5] |
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
|
[6] |
ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
|
[7] |
ZISKIND I and WAX M. Maximum likelihood localization of multiple sources by alternating projection[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(10): 1553–1560. doi: 10.1109/29.7543
|
[8] |
WANG Huafei, WAN Liangtian, DONG Mianxiong, et al. Assistant vehicle localization based on three collaborative base stations via SBL-based robust DOA estimation[J]. IEEE Internet of Things Journal, 2019, 6(3): 5766–5777. doi: 10.1109/JIOT.2019.2905788
|
[9] |
WAN Liangtian, SUN Yuchen, SUN Lu, et al. Deep learning based autonomous vehicle super resolution DOA estimation for safety driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4301–4315. doi: 10.1109/TITS.2020.3009223
|
[10] |
BURTOWY M, RZYMOWSKI M, and KULAS L. Low-profile ESPAR antenna for RSS-based DoA estimation in IoT applications[J]. IEEE Access, 2019, 7: 17403–17411. doi: 10.1109/ACCESS.2019.2895740
|
[11] |
WAN Liangtian, ZHANG Mingyue, SUN Lu, et al. Machine learning empowered IoT for intelligent vehicle location in smart cities[J]. ACM Transactions on Internet Technology, 2021, 21(3): 71. doi: 10.1145/3448612
|
[12] |
AI Lingyu, JING Changqiang, CHEN Y, et al. Maximum likelihood estimators for three-dimensional rigid body localization in internet of things environments[J]. IEEE Access, 2020, 8: 201458–201467. doi: 10.1109/ACCESS.2020.3035850
|
[13] |
MIAO Wang, LUO Chunbo, MIN Geyong, et al. Location-based robust beamforming design for cellular-enabled UAV communications[J]. IEEE Internet of Things Journal, 2021, 8(12): 9934–9944. doi: 10.1109/JIOT.2020.3028853
|
[14] |
TENNANT A and CHAMBERS B. A two-element time-modulated array with direction-finding properties[J]. IEEE Antennas and Wireless Propagation Letters, 2007, 6: 64–65. doi: 10.1109/LAWP.2007.891953
|
[15] |
HE Chong, LIANG Xianling, LI Zhaojin, et al. Direction finding by time-modulated array with harmonic characteristic analysis[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 642–645. doi: 10.1109/LAWP.2014.2373432
|
[16] |
CHEN Jingfeng, HE Chong, LIANG Xianling, et al. Direction finding of linear frequency modulation signal in time modulated array with pulse compression[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(1): 509–520. doi: 10.1109/TAP.2019.2938815
|
[17] |
LI Gang, YANG Shiwen, and NIE Zaiping. Direction of arrival estimation in time modulated linear arrays with unidirectional phase center motion[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(4): 1105–1111. doi: 10.1109/TAP.2010.2041313
|
[18] |
LAN Jifeng, SANG Jian, ZHOU Mingyong, et al. Measurement and characteristic analysis of RIS-assisted wireless communication channels in Sub-6 GHz outdoor scenarios[C]. 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 2023: 1–6.
|
[19] |
TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887
|
[20] |
WANG Siran, CHEN Mingzheng, KE Junchen, et al. Asynchronous space-time-coding digital metasurface[J]. Advanced Science, 2022, 9(24): 2200106. doi: 10.1002/advs.202200106
|
[21] |
KE Junchen, DAI Junyan, ZHANG Junwei, et al. Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases[J]. Light: Science & Applications, 2022, 11(1): 273. doi: 10.1038/s41377-022-00973-8
|
[22] |
LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
|
[23] |
WU Junwei, WANG Zhengxing, ZHANG Lei, et al. Anisotropic metasurface holography in 3-D space with high resolution and efficiency[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 302–316. doi: 10.1109/TAP.2020.3008659
|
[24] |
CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
|
[25] |
KE Junchen, CHEN Xiangyu, TANG Wankai, et al. Space-frequency-polarization-division multiplexed wireless communication system using anisotropic space-time-coding digital metasurface[J]. National Science Review, 2022, 9(11): nwac225. doi: 10.1093/nsr/nwac225
|
[26] |
GAO Xi, YANG Wanli, MA Huifeng, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6086–6095. doi: 10.1109/TAP.2018.2866636
|
[27] |
HUANG Cheng, LIAO Jianming, JI Chen, et al. Graphene-integrated reconfigurable metasurface for independent manipulation of reflection magnitude and phase[J]. Advanced Optical Materials, 2021, 9(7): 2001950. doi: 10.1002/adom.202001950
|
[28] |
PHON R and LIM S. Dynamically self-reconfigurable multifunctional all-passive metasurface[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 42393–42402. doi: 10.1021/acsami.0c12203
|
[29] |
LIU Lixiang, ZHANG Xueqian, KENNEY M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29): 5031–5036. doi: 10.1002/adma.201401484
|
[30] |
ZHANG Lei, WANG Zhengxing, SHAO Ruiwen, et al. Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 2984–2992. doi: 10.1109/TAP.2019.2955219
|
[31] |
CLEMENTE A, DUSSOPT L, SAULEAU R, et al. Wideband 400-element electronically reconfigurable transmitarray in X band[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(10): 5017–5027. doi: 10.1109/TAP.2013.2271493
|
[32] |
LI Weihan, QIU Tianshuo, WANG Jiafu, et al. Programmable coding metasurface reflector for reconfigurable multibeam antenna application[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 296–301. doi: 10.1109/TAP.2020.3010801
|
[33] |
ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0
|
[34] |
许河秀, 王彦朝, 王朝辉, 等. 基于多元信息的多功能电磁集成超表面研究进展[J]. 雷达学报, 2021, 10(2): 191–205. doi: 10.12000/JR21037
XU Hexiu, WANG Yanzhao, WANG Chaohui, et al. Research progress of multifunctional metasurfaces based on the multiplexing concept[J]. Journal of Radars, 2021, 10(2): 191–205. doi: 10.12000/JR21037
|
[35] |
LIN Mingtuan, XU Ming, WAN Xiang, et al. Single sensor to estimate DOA with programmable metasurface[J]. IEEE Internet of Things Journal, 2021, 8(12): 10187–10197. doi: 10.1109/JIOT.2021.3051014
|
[36] |
HUANG Min, ZHENG Bin, CAI Tong, et al. Machine-learning-enabled metasurface for direction of arrival estimation[J]. Nanophotonics, 2022, 11(9): 2001–2010. doi: 10.1515/nanoph-2021-0663
|
[37] |
CHEN Xiaoqing, ZHANG Lei, LIU Shuo, et al. Artificial neural network for direction-of-arrival estimation and secure wireless communications via space-time-coding digital metasurfaces[J]. Advanced Optical Materials, 2022, 10(23): 2201900. doi: 10.1002/adom.202201900
|
[38] |
DAI Junyan, TANG Wankai, WANG Manting, et al. Simultaneous in situ direction finding and field manipulation based on space-time-coding digital metasurface[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4774–4783. doi: 10.1109/TAP.2022.3145445
|
[39] |
ZHOU Qunyan, WU Junwei, WANG Siran, et al. Two-dimensional direction-of-arrival estimation based on time-domain-coding digital metasurface[J]. Applied Physics Letters, 2022, 121(18): 181702. doi: 10.1063/5.0124291
|
[40] |
WANG Jiawei, HUANG Ziai, XIAO Qiang, et al. High-precision direction-of-arrival estimations using digital programmable metasurface[J]. Advanced Intelligent Systems, 2022, 4(4): 2100164. doi: 10.1002/aisy.202100164
|
[41] |
XIA Dexiao, WANG Xin, HAN Jiaqi, et al. Accurate 2-D DoA estimation based on active metasurface with nonuniformly periodic time modulation[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(8): 3424–3435. doi: 10.1109/TMTT.2022.3222322
|
[42] |
LI Yongfeng, ZHANG Jieqiu, QU Shaobo, et al. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces[J]. Applied Physics Letters, 2014, 104(22): 221110. doi: 10.1063/1.4881935
|
[43] |
XU Hexiu, ZHANG Lei, KIM Y, et al. Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility[J]. Advanced Optical Materials, 2018, 6(10): 1800010. doi: 10.1002/adom.201800010
|
[44] |
CHEN Ke, GUO Wenlong, DING Guowen, et al. Binary geometric phase metasurface for ultra-wideband microwave diffuse scatterings with optical transparency[J]. Optics Express, 2020, 28(9): 12638–12649. doi: 10.1364/OE.392182
|