Processing math: 100%
Zhou Yu, Wang Hai-peng, Chen Si-zhe. SAR Automatic Target Recognition Based on Numerical Scattering Simulation and Model-based Matching[J]. Journal of Radars, 2015, 4(6): 666-673. doi: 10.12000/JR15080
Citation: WANG Ruichuan and WANG Yanfei. Terrain classification of polarimetric SAR images using semi-supervised spatial-channel selective kernel network[J]. Journal of Radars, 2021, 10(4): 516–530. doi: 10.12000/JR21080

Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network

DOI: 10.12000/JR21080
Funds:  The National Key Research and Development Program (2017YFB0503001)
More Information
  • Corresponding author: WANG Yanfei, yfwang@mail.ie.ac.cn
  • Received Date: 2021-06-11
  • Rev Recd Date: 2021-06-22
  • Available Online: 2021-07-05
  • Publish Date: 2021-08-28
  • In this paper, a Spatial-Channel Selective Kernel Fully Convolutional Network (SCSKFCN) and a Semi-supervised Preselection-United Optimization (SPUO) method are proposed for polarimetric Synthetic Aperture Radar (SAR) image classification. Integrated with spatial-channel attention mechanism, SCSKFCN adaptively fuses features that have different sizes of reception field, and achieves promising classification performance. SPUO can efficiently extract information contained in unlabeled samples according to annotated samples. It utilizes K-Wishart distance to preselect unlabeled samples for pseudo label generation, and then optimizes SCSKFCN with both labeled and pseudo labeled samples. During the training process of SCSKFCN, a two-step verification mechanism is applied on pseudo labeled samples to reserve reliable samples for united optimization. The experimental results show that the proposed SCSKFCN-SPUO can achieve promising performance and efficiency using limited number of annotated pixels.

     

  • [1]
    LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton, USA, CRC Press, 2017: 1–10.
    [2]
    LEE J S, GRUNES M R, AINSWORTH T L, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249–2258. doi: 10.1109/36.789621
    [3]
    WANG Haipeng, XU Feng and JIN Yaqiu. A review of polsar image classification: From polarimetry to deep learning[C]. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3189–3192. doi: 10.1109/IGARSS.2019.8899902.
    [4]
    CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78. doi: 10.1109/36.551935
    [5]
    FREEMAN A and DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963–973. doi: 10.1109/36.673687
    [6]
    DEMPSTER A P, LAIRD N M, and RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological) , 1977, 39(1): 1–38. doi: 10.1111/j.2517-6161.1977.tb01600.x
    [7]
    FUKUDA S and HIROSAWA H. Support vector machine classification of land cover: Application to polarimetric SAR data[C]. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 2001: 187–189. doi: 10.1109/IGARSS.2001.976097.
    [8]
    ZHANG Lamei, SUN Liangjie, and MOON W M. Polarimetric SAR image classification based on contextual sparse representation[C]. IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 1837–1840. doi: 10.1109/IGARSS.2015.7326149.
    [9]
    ERSAHIN K, CUMMING I G, and WARD R K. Segmentation and classification of polarimetric SAR data using spectral graph partitioning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 164–174. doi: 10.1109/TGRS.2009.2024303
    [10]
    DU Peijun, SAMAT A, WASKE B, et al. Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105: 38–53. doi: 10.1016/j.isprsjprs.2015.03.002
    [11]
    LEE J S, GRUNES M R, POTTIER E, et al. Unsupervised terrain classification preserving polarimetric scattering characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722–731. doi: 10.1109/TGRS.2003.819883
    [12]
    LEE J S, SCHULER D L, LANG R H, et al. K-distribution for multi-look processed polarimetric SAR imagery[C]. IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 1994: 2179–2181. doi: 10.1109/IGARSS.1994.399685.
    [13]
    DOULGERIS A P, ANFINSEN S N, and ELTOFT T. Classification with a non-Gaussian model for PolSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 2999–3009. doi: 10.1109/TGRS.2008.923025
    [14]
    DOULGERIS A P. An automatic U-distribution and Markov random field segmentation algorithm for PolSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1819–1827. doi: 10.1109/TGRS.2014.2349575
    [15]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [16]
    SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    [17]
    ZHOU Yu, WANG Haipeng, XU Feng, et al. Polarimetric SAR image classification using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1935–1939. doi: 10.1109/LGRS.2016.2618840
    [18]
    CHEN Siwei and TAO Chensong. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 627–631. doi: 10.1109/LGRS.2018.2799877
    [19]
    CHEN Siwei, LI Yongzhen, DAI Dahai, et al. Uniform polarimetric matrix rotation theory[C]. IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 4166–4169. doi: 10.1109/IGARSS.2013.6723751.
    [20]
    MOHAMMADIMANESH F, SALEHI B, MAHDIANPARI M, et al. A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151: 223–236. doi: 10.1016/j.isprsjprs.2019.03.015
    [21]
    LIU Xu, JIAO Licheng, TANG Xu, et al. Polarimetric convolutional network for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 3040–3054. doi: 10.1109/TGRS.2018.2879984
    [22]
    LI Yangyang, CHEN Yanqiao, LIU Guangyuan, et al. A novel deep fully convolutional network for PolSAR image classification[J]. Remote Sensing, 2018, 10(12): 1984. doi: 10.3390/rs10121984
    [23]
    CHEN Yanqiao, LI Yangyang, JIAO Licheng, et al. Adversarial reconstruction-classification networks for PolSAR image classification[J]. Remote Sensing, 2019, 11(4): 415. doi: 10.3390/rs11040415
    [24]
    GENG Jie, MA Xiaorui, FAN Jianchao, et al. Semisupervised classification of polarimetric SAR image via superpixel restrained deep neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 122–126. doi: 10.1109/LGRS.2017.2777450
    [25]
    BI Haixia, SUN Jian, and XU Zongben. A graph-based semisupervised deep learning model for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2116–2132. doi: 10.1109/TGRS.2018.2871504
    [26]
    XIE Wen, MA Gaini, ZHAO Feng, et al. PolSAR image classification via a novel semi-supervised recurrent complex-valued convolution neural network[J]. Neurocomputing, 2020, 388: 255–268. doi: 10.1016/j.neucom.2020.01.020
    [27]
    HUA Wenqiang, WANG Shuang, XIE Wen, et al. Dual-channel convolutional neural network for polarimetric SAR images classification[C]. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3201–3204. doi: 10.1109/IGARSS.2019.8899103.
    [28]
    LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 510–519. doi: 10.1109/CVPR.2019.00060.
    [29]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. 15th European Conference on Computer Vision-ECCV 2018, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
    [30]
    PARK J, WOO S, LEE J Y, et al. BAM: Bottleneck attention module[J]. arXiv preprint arXiv: 1807.06514, 2018.
    [31]
    XU Bing, WANG Naiyan, CHEN Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv preprint arXiv: 1505.00853, 2015.
    [32]
    MAAS A L, HANNUN A Y, and NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]. The 30th International Conference on Machine Learning, Atlanta, USA, 2013.
    [33]
    YU F and KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv: 1511.07122, 2015.
    [34]
    HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
    [35]
    LI Mu. Efficient mini-batch training for stochastic optimization[C]. The 20th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, 2014: 661–670.
  • Relative Articles

    [1]LI Miaoge, CHEN Bo, WANG Dongsheng, LIU Hongwei. CNN Model Visualization Method for SAR Image Target Classification[J]. Journal of Radars, 2024, 13(2): 359-373. doi: 10.12000/JR23107
    [2]CHEN Xiaolong, HE Xiaoyang, DENG Zhenhua, GUAN Jian, DU Xiaolin, XUE Wei, SU Ningyuan, WANG Jinhao. Radar Intelligent Processing Technology and Application for Weak Target[J]. Journal of Radars, 2024, 13(3): 501-524. doi: 10.12000/JR23160
    [3]WANG Canyu, JIANG Libing, REN Xiaoyuan, WANG Zhuang. Primitive-based 3D Abstraction Method for Spacecraft ISAR Images[J]. Journal of Radars, 2024, 13(3): 682-695. doi: 10.12000/JR23241
    [4]LIU Qi, YU Weidong, HONG Wen. Vehicle Detection in Multi-aspect SAR Images Based on Improved GOFRO[J]. Journal of Radars, 2023, 12(5): 1081-1096. doi: 10.12000/JR23042
    [5]ZHANG Fan, LU Shengtao, XIANG Deliang, YUAN Xinzhe. An Improved Superpixel-based CFAR Method for High-resolution SAR Image Ship Target Detection[J]. Journal of Radars, 2023, 12(1): 120-139. doi: 10.12000/JR22067
    [6]LI Yi, DU Lan, DU Yuang. Convolutional Neural Network Based on Feature Decomposition for Target Detection in SAR Images[J]. Journal of Radars, 2023, 12(5): 1069-1080. doi: 10.12000/JR23004
    [7]YAN Linjie, HAO Chengpeng, YIN Chaoran, SUN Weixuan, HOU Chaohuan. Modified Generalized Likelihood Ratio Test Detection Based on a Symmetrically Spaced Linear Array in Partially Homogeneous Environments[J]. Journal of Radars, 2021, 10(3): 443-452. doi: 10.12000/JR20140
    [8]GUO Weiwei, ZHANG Zenghui, YU Wenxian, SUN Xiaohua. Perspective on Explainable SAR Target Recognition[J]. Journal of Radars, 2020, 9(3): 462-476. doi: 10.12000/JR20059
    [9]GUO Qian, WANG Haipeng, XU Feng. Research Progress on Aircraft Detection and Recognition in SAR Imagery[J]. Journal of Radars, 2020, 9(3): 497-513. doi: 10.12000/JR20020
    [10]DAI Muchen, LENG Xiangguang, XIONG Boli, JI Kefeng. Sea-land Segmentation Method for SAR Images Based on Improved BiSeNet[J]. Journal of Radars, 2020, 9(5): 886-897. doi: 10.12000/JR20089
    [11]ZUO Lei, CHAN Xiuxiu, LU Xiaofei, LI Ming. A Weak Target Detection Method in Sea Clutter Based on Joint Space-time-frequency Decomposition[J]. Journal of Radars, 2019, 8(3): 335-343. doi: 10.12000/JR19035
    [12]Yu Lingjuan, Wang Yadong, Xie Xiaochun, Lin Yun, Hong Wen. SAR ATR Based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622-631. doi: 10.12000/JR18066
    [13]Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025
    [14]Liu Zeyu, Liu Bin, Guo Weiwei, Zhang Zenghui, Zhang Bo, Zhou Yueheng, Ma Gao, Yu Wenxian. Ship Detection in GF-3 NSC Mode SAR Images[J]. Journal of Radars, 2017, 6(5): 473-482. doi: 10.12000/JR17059
    [15]Wu Yiquan, Wang Zhilai. SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation[J]. Journal of Radars, 2017, 6(4): 349-358. doi: 10.12000/JR17019
    [16]Kang Miao, Ji Kefeng, Leng Xiangguang, Xing Xiangwei, Zou Huanxin. SAR Target Recognition with Feature Fusion Based on Stacked Autoencoder[J]. Journal of Radars, 2017, 6(2): 167-176. doi: 10.12000/JR16112
    [17]Zhang Xinzheng, Tan Zhiying, Wang Yijian. SAR Target Recognition Based on Multi-feature Multiple Representation Classifier Fusion[J]. Journal of Radars, 2017, 6(5): 492-502. doi: 10.12000/JR17078
    [18]Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037
    [19]Lin Chunfeng, Huang Chunlin, Su Yi. Target Integration and Detection with the Radon-Fourier Transform for Bistatic Radar[J]. Journal of Radars, 2016, 5(5): 526-530. doi: 10.12000/JR16049
    [20]Ding Hao, Xue Yong-hua, Huang Yong, Guan Jian. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter[J]. Journal of Radars, 2015, 4(4): 418-430. doi: 10.12000/JR14133
  • Cited by

    Periodical cited type(7)

    1. 赵梓桐,谢军,陈丽. 基于改进PSO的分布式信号合成功率分配方法. 计算机测量与控制. 2025(01): 121-130 .
    2. 张世超,朱玉权,刘志永. 基于时延差和相位差结合的分布式相参参数在线精确估计方法. 舰船电子对抗. 2025(01): 82-88+92 .
    3. 贲德. 机载有源相控阵火控雷达技术发展. 现代雷达. 2024(02): 1-15 .
    4. 欧阳晓凤,芮梓轩,曾芳玲,唐希雯. 稀疏节点直接序列扩频信号空间能量合成研究. 信息对抗技术. 2024(05): 62-73 .
    5. 蔡兴雨,王亚军,王旭,臧会凯,怀园园,朱思桥. 一种基于云边端架构的雷达组网协同系统设计方案. 现代雷达. 2024(09): 37-48 .
    6. 王元昊,王宏强,杨琪. 动平台分布孔径雷达相参合成探测方法与试验验证. 雷达学报. 2024(06): 1279-1297 . 本站查看
    7. 赵开发,宋虎,刘溶,王鑫海. 一种基于阵列构型与阵元数量联合优化的分布式雷达主瓣干扰抑制方法. 雷达学报. 2024(06): 1355-1369 . 本站查看

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.2 %FULLTEXT: 32.2 %META: 56.2 %META: 56.2 %PDF: 11.6 %PDF: 11.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.6 %其他: 7.6 %其他: 2.0 %其他: 2.0 %Parkville: 0.1 %Parkville: 0.1 %United States: 0.1 %United States: 0.1 %[]: 0.4 %[]: 0.4 %上海: 1.9 %上海: 1.9 %东京: 0.3 %东京: 0.3 %东京都: 0.1 %东京都: 0.1 %东莞: 0.2 %东莞: 0.2 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.2 %临沂: 0.2 %丹东: 0.1 %丹东: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %九江: 0.2 %九江: 0.2 %保定: 0.1 %保定: 0.1 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.1 %内江: 0.1 %凉山: 0.1 %凉山: 0.1 %北京: 13.5 %北京: 13.5 %十堰: 0.1 %十堰: 0.1 %南京: 2.3 %南京: 2.3 %南充: 0.2 %南充: 0.2 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %卡拉奇: 0.1 %卡拉奇: 0.1 %印多尔: 0.2 %印多尔: 0.2 %厦门: 0.5 %厦门: 0.5 %台北: 0.1 %台北: 0.1 %合肥: 1.1 %合肥: 1.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.1 %唐山: 0.1 %喀什: 0.1 %喀什: 0.1 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.3 %大连: 0.3 %天津: 0.4 %天津: 0.4 %天门: 0.1 %天门: 0.1 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.2 %安康: 0.2 %宜春: 0.1 %宜春: 0.1 %宣城: 0.1 %宣城: 0.1 %常州: 0.3 %常州: 0.3 %常德: 0.2 %常德: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.1 %广州: 1.1 %庆阳: 0.1 %庆阳: 0.1 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.2 %延安: 0.2 %开封: 0.1 %开封: 0.1 %张家口: 1.3 %张家口: 1.3 %徐州: 0.4 %徐州: 0.4 %德黑兰: 0.4 %德黑兰: 0.4 %忻州: 1.2 %忻州: 1.2 %怀化: 0.1 %怀化: 0.1 %悉尼: 0.2 %悉尼: 0.2 %成都: 1.9 %成都: 1.9 %扬州: 0.5 %扬州: 0.5 %斯德哥尔摩: 0.1 %斯德哥尔摩: 0.1 %新乡: 0.1 %新乡: 0.1 %新德里: 0.1 %新德里: 0.1 %新泽西州: 0.1 %新泽西州: 0.1 %新竹: 0.2 %新竹: 0.2 %无锡: 0.3 %无锡: 0.3 %昆明: 0.9 %昆明: 0.9 %昌吉: 0.1 %昌吉: 0.1 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杭州: 1.2 %杭州: 1.2 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.1 %桂林: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 0.7 %武汉: 0.7 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %泉州: 0.1 %泉州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %济宁: 0.1 %济宁: 0.1 %淮北: 0.1 %淮北: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 1.1 %深圳: 1.1 %渥太华: 0.2 %渥太华: 0.2 %温州: 0.3 %温州: 0.3 %渭南: 0.1 %渭南: 0.1 %湖州: 0.2 %湖州: 0.2 %湛江: 0.1 %湛江: 0.1 %漯河: 1.1 %漯河: 1.1 %烟台: 0.1 %烟台: 0.1 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 25.3 %芒廷维尤: 25.3 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.2 %苏州: 0.2 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.6 %衡水: 0.6 %衡阳: 0.5 %衡阳: 0.5 %衢州: 0.1 %衢州: 0.1 %西宁: 14.3 %西宁: 14.3 %西安: 2.6 %西安: 2.6 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.1 %赣州: 0.1 %运城: 0.5 %运城: 0.5 %连云港: 0.1 %连云港: 0.1 %遂宁: 0.4 %遂宁: 0.4 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.4 %郑州: 0.4 %重庆: 0.6 %重庆: 0.6 %长沙: 1.4 %长沙: 1.4 %长治: 0.2 %长治: 0.2 %青岛: 0.4 %青岛: 0.4 %首尔: 0.3 %首尔: 0.3 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ParkvilleUnited States[]上海东京东京都东莞中卫临汾临沂丹东乌鲁木齐九江保定兰州兰辛内江凉山北京十堰南京南充南宁南昌南通卡拉奇印多尔厦门台北合肥呼和浩特咸阳哈尔滨唐山喀什嘉兴大连天津天门太原威海娄底宁波安康宜春宣城常州常德平顶山广州庆阳库比蒂诺延安开封张家口徐州德黑兰忻州怀化悉尼成都扬州斯德哥尔摩新乡新德里新泽西州新竹无锡昆明昌吉晋中晋城朝阳杭州格兰特县桂林武威武汉沈阳沧州泉州洛阳济南济宁淮北淮南深圳渥太华温州渭南湖州湛江漯河烟台珠海石家庄福州秦皇岛纽约绵阳芒廷维尤芜湖芝加哥苏州莫斯科葫芦岛衡水衡阳衢州西宁西安诺沃克贵阳赣州运城连云港遂宁邯郸郑州重庆长沙长治青岛首尔黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1806) PDF downloads(178) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint