Volume 7 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
Liu Junfeng, Liu Shuo, Fu Xiaojian, Cui Tiejun. Terahertz Information Metamaterials and Metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55. doi: 10.12000/JR17100
Citation: Liu Junfeng, Liu Shuo, Fu Xiaojian, Cui Tiejun. Terahertz Information Metamaterials and Metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55. doi: 10.12000/JR17100

Terahertz Information Metamaterials and Metasurfaces

doi: 10.12000/JR17100
Funds:  The National S&T Major Project (36-10-1315), The National Natural Science Foundation of China (61302020, 61631007, 61571117, 61501112, 61501117, 61522106, 61722106, 61701107)
  • Received Date: 2017-11-06
  • Rev Recd Date: 2018-01-14
  • Available Online: 2018-02-05
  • Publish Date: 2018-02-28
  • In this paper, we review the recent developments on information metamaterials, including digital metamaterials, coding metamaterials, and programmable metamaterials; furthermore, we discuss their applications in the terahertz (THz)-frequency region. In addition their flexibility to manipulate the electromagnetic waves, the physical principle, numerical simulation, fabrication, and application of information metamaterial are discussed in detail. Moreover, we developed and applied a coding metasurface that works in the THz band. Furthermore, the principle of real-time programmable metamaterials and their application in novel imaging systems and radar systems are illustrated. Information metamaterials and metasurfaces can be used for various functional devices such as beam splitting and low radar cross section, which open up a novel route to manipulate THz radiations.

     

  • loading
  • [1]
    Smith D R, Schultz S, Markoš P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 2002, 65(19): 195104. DOI: 10.1103/PhysRevB.65.195104
    [2]
    Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. DOI: 10.1126/science.1210713
    [3]
    Pfeiffer C and Grbic A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401. DOI: 10.1103/PhysRevLett.110.197401
    [4]
    Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211): 376–379. DOI: 10.1038/nature07247
    [5]
    Shen X P, Cui T J, Martin-Cano D, et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): 40–45. DOI: 10.1073/pnas.1210417110
    [6]
    Ma H F, Shen X P, Cheng Q, et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons[J]. Laser&Photonics Reviews, 2014, 8(1): 146–151.
    [7]
    Zhang H C, Zhang Q, Liu J F, et al. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies[J]. Scientific Reports, 2016, 6: 23396. DOI: 10.1038/srep23396
    [8]
    Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.
    [9]
    Lin J, Mueller J B, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331–334. DOI: 10.1126/science.1233746
    [10]
    Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431. DOI: 10.1038/nmat3292
    [11]
    Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science&Applications, 2014, 3(10): e218.
    [12]
    Liu S, Cui T J, Xu Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light:Science&Applications, 2016, 5(5): e16076.
    [13]
    Liu S, Zhang H C, Zhang L, et al. Full-state controls of terahertz waves using tensor coding metasurfaces[J]. ACS Applied Materials&Interfaces, 2017, 9(25): 21503–21514.
    [14]
    Wu H T, Liu S, Wan X, et al. Controlling energy radiations of electromagnetic waves via frequency coding metamaterials[J]. Advanced Science, 2017, 4(9): 1700098. DOI: 10.1002/advs.201700098
    [15]
    Liu S, Cui T J, Zhang L, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 2016, 3(10): 1600156. DOI: 10.1002/advs.201600156
    [16]
    Gao L H, Cheng Q, Yang J, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light:Science&Applications, 2015, 4(9): e324.
    [17]
    Hashemi M R M, Yang S H, Wang T Y, et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces[J]. Scientific Reports, 2016, 6: 35439. DOI: 10.1038/srep35439
    [18]
    Scherger B, Reuter M, Scheller M, et al. Discrete terahertz beam steering with an electrically controlled liquid crystal device[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2012, 33(11): 1117–1122. DOI: 10.1007/s10762-012-9927-5
    [19]
    Smith B C, Whitaker J F, and Rand S C. Steerable THz pulses from thin emitters via optical pulse-front tilt[J]. Optics Express, 2016, 24(18): 20755–20762. DOI: 10.1364/OE.24.020755
    [20]
    Monnai Y, Altmann K, Jansen C, et al. Terahertz beam steering and variable focusing using programmable diffraction gratings[J]. Optics Express, 2013, 21(2): 2347–2354. DOI: 10.1364/OE.21.002347
    [21]
    Shrekenhamer D, Montoya J, Krishna S, et al. Four-color metamaterial absorber THz spatial light modulator[J]. Advanced Optical Materials, 2013, 1(12): 905–909. DOI: 10.1002/adom.v1.12
    [22]
    Chen H T, Padilla W J, Zide J M, et al. Active terahertz metamaterial devices[J].Nature, 2006, 444(7119): 597–600. DOI: 10.1038/nature05343
    [23]
    Li L L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8: 197. DOI: 10.1038/s41467-017-00164-9
    [24]
    Wan X, Qi M Q, Chen T Y, et al. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface[J]. Scientific Reports, 2016, 6: 20663. DOI: 10.1038/srep20663
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4885) PDF downloads(1287) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint