Volume 10 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
FANG Zuqi, CHENG Qiang, and CUI Tiejun. Nonlinear quasi-Bessel beam generation based on the time-domain digital-coding metasurface[J]. Journal of Radars, 2021, 10(2): 267–273. DOI: 10.12000/JR21043
Citation: FANG Zuqi, CHENG Qiang, and CUI Tiejun. Nonlinear quasi-Bessel beam generation based on the time-domain digital-coding metasurface[J]. Journal of Radars, 2021, 10(2): 267–273. DOI: 10.12000/JR21043

Nonlinear Quasi-Bessel Beam Generation Based on the Time-domain Digital-Coding Metasurface

doi: 10.12000/JR21043
Funds:  The National Key Research and Development Program of China (2017YFA0700201), The National Natural Science Foundation of China (61890544)
More Information
  • Author Bio:

    FANG Zuqi (1995–) is a doctoral candidate at Southeast University. His main research interests are passive phased arr ays, smart antennas and metamaterials. E-mail: 230209030@seu.edu.cn

    CHENG Qiang (1979–) received the B.S. and M.S. degrees from the Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2001 and 2004, respectively, and the Ph.D. degree from Southeast University, Nanjing, in 2008. In 2008, he joined the State Key Laboratory of Millimeter Waves, Southeast University, where he was involved in the development of metamaterials and metadevices. He is currently a Full Professor with the School of Information Science and Engineering, Southeast University. He leads a group of Ph.D. students and master’s students in the areas of metamaterials, tunable microwaves circuits, microwave imaging, and terahertz systems. He has authored or coauthored more than 100 publications, with citation over 2000 times. E-mail: qiangcheng@seu.edu.cn

    CUI Tiejun (1965–) is the academician of Chinese Academy of Sciences and the Chief Professor of Southeast University, Nanjing, China. He authored or co-authored two books and published over 500 peer-review journal papers, which have been cited by more than 35000 times (H-index 93, Google Scholar). He proposed the concepts of digital coding metamaterials, programmable metamaterials, and information metamaterials, and realized their first demonstrations. Dr. Cui received the National Natural Science Awards of China in 2014 and 2018, respectively. Based on Clarivate Analytics, he was a Highly Cited Researcher (Web of Science) in 2019 and 2020, and his researches have been widely reported by Nature News, Science, MIT Technology Review, Scientific American, New Scientists, etc. Dr. Cui is an IEEE Fellow. E-mail: tjcui@seu.edu.cn

  • Corresponding author: CUI Tiejun. E-mail: tjcui@seu.edu.cn
  • Received Date: 2021-04-05
  • Rev Recd Date: 2021-04-26
  • Available Online: 2021-04-30
  • Publish Date: 2021-04-28
  • A quasi-Bessel beam is a type of nondiffracted beam commonly used in microwave and optical fields. Although numerous methods have been proposed for quasi-Bessel beam generation, they are valid only in linear systems, indicating that the generation of nonlinear quasi-Bessel beams remains a major challenge. Thus, we propose a new approach to produce quasi-Bessel beams at high-order harmonics based on the time-domain digital-coding metasurface, which is utilized to achieve accurate control of the phase profile at the nonlinear frequencies via proper coding strategies. The effect of phase discretization is also analyzed in detail. The simulation results confirm the validity of the proposed method, which provides a new approach for nonlinear beam manipulation.

     

  • loading
  • [1]
    DURNIN J, MICELI J J JR, and EBERLY J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499–1501. doi: 10.1103/PhysRevLett.58.1499
    [2]
    LEMAITRE-AUGER P, ABIELMONA S, and CALOZ C. Generation of bessel beams by two-dimensional antenna arrays using sub-sampled distributions[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 1838–1849. doi: 10.1109/TAP.2012.2232263
    [3]
    VASARA A, TURUNEN J, and FRIBERG A T. Realization of general nondiffracting beams with computer-generated holograms[J]. Journal of the Optical Society of America A, Optics and Image Science, 1989, 6(11): 1748–1754. doi: 10.1364/JOSAA.6.001748
    [4]
    SCOTT G and MCARDLE N. Efficient generation of nearly diffraction-free beams using an axicon[J]. Optical Engineering, 1992, 31(12): 2640–2643. doi: 10.1117/12.60017
    [5]
    XU Hexiu, HAN Lei, LI Ying, et al. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control[J]. ACS Photonics, 2019, 6(1): 211–220. doi: 10.1021/acsphotonics.8b01439
    [6]
    XU Hexiu, HU Guangwei, LI Ying, et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation[J]. Light: Science & Applications, 2019, 8(1): 3. doi: 10.1038/s41377-018-0113-y
    [7]
    QI Meiqing, TANG Wenxuan, and CUI Tiejun. A broadband bessel beam launcher using metamaterial[J]. Scientific Reports, 2015, 5: 11732. doi: 10.1038/srep11732
    [8]
    PFEIFFER C and GRBIC A. Controlling vector bessel beams with metasurfaces[J]. Physical Review Applied, 2014, 2(4): 044012. doi: 10.1103/PhysRevApplied.2.044012
    [9]
    ZHANG Cheng, YANG Jin, YANG Liuxi, et al. Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics[J]. Nanophotonics, 2020, 9(9): 2771–2781. doi: 10.1515/nanoph-2019-0538
    [10]
    ROSE A, POWELL D A, SHADRIVOV I V, et al. Circular dichroism of four-wave mixing in nonlinear metamaterials[J]. Physical Review B, 2013, 88(19): 195148. doi: 10.1103/PhysRevB.88.195148
    [11]
    LUO Zhangjie, CHEN Mingzheng, WANG Zhengxing, et al. Digital nonlinear metasurface with customizable nonreciprocity[J]. Advanced Functional Materials, 2019, 29(49): 1906635. doi: 10.1002/adfm.201906635
    [12]
    STEWART S A, SMY T J, and GUPTA S. Finite-difference time-domain modeling of space-time-modulated metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 281–292. doi: 10.1109/TAP.2017.2772045
    [13]
    ROSE A and SMITH D R. Overcoming phase mismatch in nonlinear metamaterials [Invited][J]. Optical Materials Express, 2011, 1(7): 1232–1243. doi: 10.1364/OME.1.001232
    [14]
    KLEIN M W, ENKRICH C, WEGENER M, et al. Second-harmonic generation from magnetic metamaterials[J]. Science, 2006, 313(5786): 502–504. doi: 10.1126/science.1129198
    [15]
    HADAD Y, SOUNAS D L, and ALU A. Space-time gradient metasurfaces[J]. Physical Review B, 2015, 92: 100304. doi: 10.1103/PhysRevB.92.100304
    [16]
    SHALTOUT A, KILDISHEV A, and SHALAEV V. Time-varying metasurfaces and Lorentz non-reciprocity[J]. Optical Materials Express, 2015, 5(11): 2459–2467. doi: 10.1364/OME.5.002459
    [17]
    LUO Zhangjie, WANG Qiang, ZHANG Xin’ge, et al. Intensity‐dependent metasurface with digitally reconfigurable distribution of nonlinearity[J]. Advanced Optical Materials, 2019, 7(19): 1900792. doi: 10.1002/adom.201900792
    [18]
    DAI Junyan, YANG Liuxi, KE Junchen, et al. High-efficiency synthesizer for spatial waves based on space-time-coding digital metasurface[J]. Laser & Photonics Reviews, 2020, 14(6): 1900133. doi: 10.1002/lpor.201900133
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1220) PDF downloads(179) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint