Volume 11 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
JIANG Weixiang, TIAN Hanwei, SONG Chao, et al. Digital coding metasurfaces: toward programmable and smart manipulations of electromagnetic functions[J]. Journal of Radars, 2022, 11(6): 1003–1019. doi: 10.12000/JR22167
Citation: JIANG Weixiang, TIAN Hanwei, SONG Chao, et al. Digital coding metasurfaces: toward programmable and smart manipulations of electromagnetic functions[J]. Journal of Radars, 2022, 11(6): 1003–1019. doi: 10.12000/JR22167

Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions

doi: 10.12000/JR22167
Funds:  The National Natural Science Foundation of China (61890544), The Fundamental Research Funds for the Central Universities (2242022k30004)
More Information
  • Corresponding author: JIANG Weixiang, wxjiang81@seu.edu.cn
  • Received Date: 2022-08-09
  • Rev Recd Date: 2022-11-25
  • Available Online: 2022-11-28
  • Publish Date: 2022-12-07
  • Digital coding metasurfaces are an important research branch of metamaterials and metasurfaces. The digital coding method replaces the equivalent medium theory to characterize metasurfaces, which not only simplifies the design process of metasurfaces but also builds a bridge between digital information and metasurface physics. The development of digital coding metasurfaces is systematically summarized in this review, and latest research progress of digital coding metasurfaces toward programmable and smart ElectroMagnetic (EM) manipulations is highlighted. First, the basic concept of digital coding metasurfaces and corresponding research in information theory are thoroughly explained. Next, the working principle, realization method, and different research directions of programmable metasurfaces are detailed, including radiation-type programmable metasurfaces, multidimensional programmable metasurfaces, time-domain digital coding metasurfaces, and new wireless communication systems. The recent research on smart metasurfaces is then introduced, and their capabilities of environment sensing and adaptive EM manipulation are demonstrated. Finally, the future development and prospects of metasurfaces are also discussed.


  • loading
  • [1]
    SHELBY R A, SMITH D R, and SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77–79. doi: 10.1126/science.1058847
    SILVEIRINHA M and ENGHETA N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials[J]. Physical Review Letters, 2006, 97(15): 157403. doi: 10.1103/PhysRevLett.97.157403
    LIU Ruopeng, CHENG Qiang, HAND T, et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies[J]. Physical Review Letters, 2008, 100(2): 023903. doi: 10.1103/PhysRevLett.100.023903
    SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980. doi: 10.1126/science.1133628
    JIANG Weixiang, QIU Chengwei, HAN Tiancheng, et al. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials, 2013, 25(48): 6963–6968. doi: 10.1002/adma.201303657
    JIANG Weixiang, GE Shuo, HAN Tiancheng, et al. Shaping 3D path of electromagnetic waves using gradient-refractive-index metamaterials[J]. Advanced Science, 2016, 3(8): 1600022. doi: 10.1002/advs.201600022
    CHEN Xi, MA Huifeng, ZOU Xiaying, et al. Three-dimensional broadband and high-directivity lens antenna made of metamaterials[J]. Journal of Applied Physics, 2011, 110(4): 044904. doi: 10.1063/1.3622596
    ZHANG Na, JIANG Weixiang, MA Huifeng, et al. Compact high-performance lens antenna based on impedance-matching gradient-index metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 1323–1328. doi: 10.1109/TAP.2018.2880115
    TIAN Hanwei, JIANG Weixiang, LI Xin, et al. An ultrawideband and high-gain antenna based on 3-D impedance-matching metamaterial lens[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(6): 3084–3093. doi: 10.1109/TAP.2020.3037751
    YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    MA Qian, SHI Chuanbo, BAI Guodong, et al. Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit[J]. Advanced Optical Materials, 2017, 5(23): 1700548. doi: 10.1002/adom.201700548
    SUN Shulin, HE Qiong, XIAO Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431. doi: 10.1038/NMAT3292
    ZHU H L, CHEUNG S W, CHUNG K L, et al. Linear-to-circular polarization conversion using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4615–4623. doi: 10.1109/TAP.2013.2267712
    XU Peng, WANG Guichen, CAI Xiao, et al. Design and optimization of high-efficiency meta-devices based on the equivalent circuit model and theory of electromagnetic power energy storage[J]. Journal of Physics D:Applied Physics, 2022, 55(19): 195303. doi: 10.1088/1361-6463/ac4e34
    WANG Zhuochao, DING Xumin, ZHANG Kuang, et al. Huygens metasurface holograms with the modulation of focal energy distribution[J]. Advanced Optical Materials, 2018, 6(12): 1800121. doi: 10.1002/adom.201800121
    ZHENG Guoxing, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308–312. doi: 10.1038/NNANO.2015.2
    ESTAKHRI N M and ALÙ A. Wave-front transformation with gradient metasurfaces[J]. Physical Review X, 2016, 6(4): 041008. doi: 10.1103/PhysRevX.6.041008
    ASADCHY V S, ALBOOYEH M, TCVETKOVA S N, et al. Perfect control of reflection and refraction using spatially dispersive metasurfaces[J]. Physical Review B, 2016, 94(7): 075142. doi: 10.1103/PhysRevB.94.075142
    ZHOU Jiafeng, ZHANG Pei, HAN Jiaqi, et al. Metamaterials and metasurfaces for wireless power transfer and energy harvesting[J]. Proceedings of the IEEE, 2022, 110(1): 31–55. doi: 10.1109/JPROC.2021.3127493
    LI Long, ZHANG Xuanming, SONG Chaoyun, et al. Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(3): 1518–1528. doi: 10.1109/TMTT.2020.3040962
    SHI Yan, MENG Haoxuan, and WANG Huajie. Polarization conversion metasurface design based on characteristic mode rotation and its application into wideband and miniature antennas with a low radar cross section[J]. Optics Express, 2021, 29(5): 6794–6809. doi: 10.1364/oe.416976
    LIU Shuo, CUI Tiejun, XU Quan, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light:Science & Applications, 2016, 5(5): e16076. doi: 10.1038/lsa.2016.76
    LIU Shuo, CUI Tiejun, NOOR A, et al. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves[J]. Light:Science & Applications, 2018, 7(5): 18008. doi: 10.1038/lsa.2018.8
    TIAN Hanwei, JIANG Weixiang, LI Xin, et al. Generation of high-order orbital angular momentum beams and split beams simultaneously by employing anisotropic coding metasurfaces[J]. Journal of Optics, 2019, 21(6): 065103. doi: 10.1088/2040-8986/ab16b9
    ZHANG Lei, LIU Shuo, LI Lianlin, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36447–36455. doi: 10.1021/acsami.7b12468
    MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
    GOU Yue, MA Huifeng, WU Liangwei, et al. Broadband spin-selective wavefront manipulations based on pancharatnam-berry coding metasurfaces[J]. ACS Omega, 2021, 6(44): 30019–30026. doi: 10.1021/acsomega.1c04733
    BAI Guodong, MA Qian, IQBAL S, et al. Multitasking shared aperture enabled with multiband digital coding metasurface[J]. Advanced Optical Materials, 2018, 6(21): 1800657. doi: 10.1002/adom.201800657
    XIE Rensheng, XIN Minbo, CHEN Shiguo, et al. Frequency-multiplexed complex-amplitude meta-devices based on bispectral 2-bit coding meta-atoms[J]. Advanced Optical Materials, 2020, 8(24): 2000919. doi: 10.1002/adom.202000919
    KAMALI S M, ARBABI E, ARBABI A, et al. Angle-multiplexed metasurfaces: Encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4): 041056. doi: 10.1103/PhysRevX.7.041056
    QIU Meng, JIA Min, MA Shaojie, et al. Angular dispersions in terahertz metasurfaces: Physics and applications[J]. Physical Review Applied, 2018, 9(5): 054050. doi: 10.1103/PhysRevApplied.9.054050
    ZHANG Xiyue, LI Qi, LIU Feifei, et al. Controlling angular dispersions in optical metasurfaces[J]. Light:Science & Applications, 2020, 9(1): 76. doi: 10.1038/s41377-020-0313-0
    ZHANG Lei, WU Ruiyuan, BAI Guodong, et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves[J]. Advanced Functional Materials, 2018, 28(33): 1802205. doi: 10.1002/adfm.201802205
    WU Ruiyuan, ZHANG Lei, BAO Lei, et al. Digital metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations[J]. Advanced Optical Materials, 2019, 7(8): 1801429. doi: 10.1002/adom.201801429
    BAO Lei, FU Xiaojian, WU Ruiyuan, et al. Full-space manipulations of electromagnetic wavefronts at two frequencies by encoding both amplitude and phase of metasurface[J]. Advanced Materials Technologies, 2021, 6(4): 2001032. doi: 10.1002/admt.202001032
    WU Liangwei, MA Huifeng, GOU Yue, et al. Multitask bidirectional digital coding metasurface for independent controls of multiband and full-space electromagnetic waves[J]. Nanophotonics, 2022, 11(12): 2977–2987. doi: 10.1515/nanoph-2022-0190
    CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
    GIOVAMPAOLA G D and ENGHETA N. Digital metamaterials[J]. Nature Materials, 2014, 13(12): 1115–1121. doi: 10.1038/nmat4082
    JING Hongbo, MA Qian, BAI Guodong, et al. Anomalously perfect reflections based on 3-bit coding metasurfaces[J]. Advanced Optical Materials, 2019, 7(9): 1801742. doi: 10.1002/adom.201801742
    CUI Tiejun, LIU Shuo, and LI Lianlin. Information entropy of coding metasurface[J]. Light:Science & Applications, 2016, 5(11): e16172. doi: 10.1038/lsa.2016.172
    LIU Shuo, CUI Tiejun, ZHANG Lei, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 2016, 3(10): 1600156. doi: 10.1002/advs.201600156
    WU Ruiyuan, SHI Chuanbo, LIU Shuo, et al. Addition theorem for digital coding metamaterials[J]. Advanced Optical Materials, 2018, 6(5): 1701236. doi: 10.1002/adom.201701236
    HAN Jiaqi, LI Long, MA Xiangjin, et al. Adaptively smart wireless power transfer using 2-Bit programmable metasurface[J]. IEEE Transactions on Industrial Electronics, 2022, 69(8): 8524–8534. doi: 10.1109/TIE.2021.3105988
    ZHU BoO, ZHAO Junming, and FENG Yijun. Active impedance metasurface with full 360° reflection phase tuning[J]. Scientific Reports, 2013, 3(1): 3059. doi: 10.1038/srep03059
    HUANG Cheng, ZHANG Changlei, YANG Jianing, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485. doi: 10.1002/adom.201700485
    TIAN Hanwei, ZHANG Xinge, JIANG Weixiang, et al. Programmable controlling of multiple spatial harmonics via a nonlinearly phased grating metasurface[J]. Advanced Functional Materials, 2022, 32(31): 2203120. doi: 10.1002/adfm.202203120
    CHEN Lei, MA Qian, JING Hongbo, et al. Space-energy digital-coding metasurface based on an active amplifier[J]. Physical Review Applied, 2019, 11(5): 054051. doi: 10.1103/PhysRevApplied.11.054051
    MA Qian, CHEN Lei, JING Hongbo, et al. Controllable and programmable nonreciprocity based on detachable digital coding metasurface[J]. Advanced Optical Materials, 2019, 7(24): 1901285. doi: 10.1002/adom.201901285
    TARAVATI S and ELEFTHERIADES G V. Full-duplex reflective beamsteering metasurface featuring magnetless nonreciprocal amplification[J]. Nature Communications, 2021, 12(1): 4414. doi: 10.1038/s41467-021-24749-7
    WANG Xin, HAN Jiaqi, TIAN Shuncheng, et al. Amplification and manipulation of nonlinear electromagnetic waves and enhanced nonreciprocity using transmissive space-time-coding metasurface[J]. Advanced Science, 2022, 9(11): 2105960. doi: 10.1002/advs.202105960
    WANG Qiang, ZHANG Xinge, TIAN Hanwei, et al. Millimeter-wave digital coding metasurfaces based on nematic liquid crystals[J]. Advanced Theory and Simulations, 2019, 2(12): 1900141. doi: 10.1002/adts.201900141
    WU Jingbo, SHEN Ze, GE Shijun, et al. Liquid crystal programmable metasurface for terahertz beam steering[J]. Applied Physics Letters, 116(13): 131104.
    LIU Chenxi, YANG Fei, FU Xiaojian, et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals[J]. Advanced Optical Materials, 2021, 9(22): 2100932. doi: 10.1002/adom.202100932
    CHEN Hao, LU Weibing, LIU Zhenguo, et al. Microwave programmable graphene metasurface[J]. ACS Photonics, 2020, 7(6): 1425–1435. doi: 10.1021/acsphotonics.9b01807
    CONG Longqing, PITCHAPPA P, WANG Nan, et al. Electrically programmable terahertz diatomic metamolecules for chiral optical control[J]. Research, 2019, 2019: 7084251. doi: 10.34133/2019/7084251
    MANJAPPA M, PITCHAPPA P, SINGH N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies[J]. Nature Communications, 2018, 9(1): 4056. doi: 10.1038/s41467-018-06360-5
    YANG Weixu, CHEN Ke, ZHENG Yilin, et al. Angular-adaptive reconfigurable spin-locked metasurface retroreflector[J]. Advanced Science, 2021, 8(21): 2100885. doi: 10.1002/advs.202100885
    CHEN Benwen, WU Jingbo, LI Weili, et al. Programmable terahertz metamaterials with non-volatile memory[J]. Laser & Photonics Reviews, 2022, 16(4): 2100472. doi: 10.1002/lpor.202100472
    GUO Jinying, WANG Teng, ZHAO Huan, et al. Reconfigurable terahertz metasurface pure phase holograms[J]. Advanced optical materials, 2019, 7(10): 1801696. doi: 10.1002/adom.201801696
    IMANI M F, ABADAL S, and DEL HOUGNE P. Metasurface-programmable wireless network-on-chip[J]. Advanced Science, 2022, 9(26): 2201458. doi: 10.1002/advs.202201458
    VENKATESH S, LU Xuyang, SAEIDI H, et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips[J]. Nature Electronics, 2020, 3(12): 785–793. doi: 10.1038/s41928-020-00497-2
    YANG Jin, CHEN Shangtong, CHEN Mao, et al. Folded transmitarray antenna with circular polarization based on metasurface[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 806–814. doi: 10.1109/TAP.2020.3016170
    LI He, LI Yunbo, SHEN Jialin, et al. Low-profile electromagnetic holography by using coding Fabry-Perot type metasurface with in-plane feeding[J]. Advanced Optical Materials, 2020, 8(9): 1902057. doi: 10.1002/adom.201902057
    XU Peng, TIAN Hanwei, JIANG Weixiang, et al. Phase and polarization modulations using radiation-type metasurfaces[J]. Advanced Optical Materials, 2021, 9(16): 2100159. doi: 10.1002/adom.202100159
    XU Peng, TIAN Hanwei, CAI Xiao, et al. Radiation-type metasurfaces for advanced electromagnetic manipulation[J]. Advanced Functional Materials, 2021, 31(25): 2100569. doi: 10.1002/adfm.202100569
    BAI Lin, ZHANG Xin’ge, WANG Qiang, et al. Dual-band reconfigurable metasurface-assisted Fabry-Pérot antenna with high-gain radiation and low scattering[J]. IET Microwaves, Antennas & Propagation, 2020, 14(15): 1933–1942. doi: 10.1049/iet-map.2020.0415
    WANG Zhenglong, GE Yuehe, PU Jixiong, et al. 1 bit electronically reconfigurable folded reflectarray antenna based on p-i-n diodes for wide-angle beam-scanning applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(9): 6806–6810. doi: 10.1109/TAP.2020.2975265
    LIU Baiyang, WONG Saiwai, TAM K W, et al. Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1068–1076. doi: 10.1109/TAP.2021.3111214
    BAI Xudong, ZHANG Fuli, SUN Li, et al. Radiation-type programmable metasurface for direct manipulation of electromagnetic emission[J]. Laser & Photonics Reviews, 2022, 16(11): 2200140. doi: 10.1002/lpor.202200140
    HONG Qiaoru, MA Qian, GAO Xinxin, et al. Programmable amplitude-coding metasurface with multifrequency modulations[J]. Advanced Intelligent Systems, 2020, 3(8): 2000260. doi: 10.1002/aisy.202000260
    MA Qian, HONG Qiaoru, BAI Guodong, et al. Editing arbitrarily linear polarizations using programmable metasurface[J]. Physical Review Applied, 2020, 13(2): 021003. doi: 10.1103/PhysRevApplied.13.021003
    ZHANG Xinge, YU Qian, JIANG Weixiang, et al. Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382. doi: 10.1002/advs.201903382
    CHEN Ke, ZHANG Na, DING Guowen, et al. Active anisotropic coding metasurface with independent real-time reconfigurability for dual polarized waves[J]. Advanced Materials Technologies, 2020, 5(2): 1900930. doi: 10.1002/admt.201900930
    BAO Lei, MA Qian, WU Ruiyuan, et al. Programmable reflection-transmission shared-aperture metasurface for real-time control of electromagnetic waves in full space[J]. Advanced Science, 2021, 8(15): 2100149. doi: 10.1002/advs.202100149
    HU Qi, ZHAO Jianmin, CHEN Ke, et al. An intelligent programmable omni-metasurface[J]. Laser & Photonics Reviews, 2022, 16(6): 2100718. doi: 10.1002/lpor.202100718
    CHEN Lei, MA Qian, NIE Qianfan, et al. Dual-polarization programmable metasurface modulator for near-field information encoding and transmission[J]. Photonics Research, 2021, 9(2): 116–124. doi: 10.1364/PRJ.412052
    WANG Hailin, ZHANG Yankai, ZHANG Taiyi, et al. Broadband and programmable amplitude-phase-joint-coding information metasurface[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 29431–29440. doi: 10.1021/acsami.2c05907
    LIU Guangyao, LI Long, HAN Jiaqi, et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23554–23564. doi: 10.1021/acsami.0c02467
    ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135
    DAI Junyan, TANG Wangkai, YANG Liuxi, et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1618–1627. doi: 10.1109/TAP.2019.2952460
    CHEN Mingzheng, TANG Wankai, DAI Junyan, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface[J]. National Science Review, 2022, 9(1): nwab134. doi: 10.1093/nsr/nwab134
    ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0
    ZHANG Lei, CHEN Mingzheng, TANG Wangkai, et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces[J]. Nature Electronics, 2021, 4(3): 218–227. doi: 10.1038/s41928-021-00554-4
    ZHANG Xinge, TANG Wenxuan, JIANG Weixiang, et al. Light-controllable digital coding metasurfaces[J]. Advanced Science, 2018, 5(11): 1801028. doi: 10.1002/advs.201801028
    ZHANG Xinge, JIANG Weixiang, and CUI Tiejun. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity[J]. Applied Physics Letters, 2018, 113(9): 091601. doi: 10.1063/1.5045718
    SUN Yalun, ZHANG Xinge, YU Qian, et al. Infrared-controlled programmable metasurface[J]. Science Bulletin, 2020, 65(11): 883–888. doi: 10.1016/j.scib.2020.03.016
    ZHANG Xinge, JIANG Weixiang, JIANG Haolin, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165–171. doi: 10.1038/s41928-020-0380-5
    ZHANG Xinge, SUN Yalun, ZHU Bingcheng, et al. Light-controllable time-domain digital coding metasurfaces[J]. Advanced Photonics, 2022, 4(2): 025001. doi: 10.1117/1.AP.4.2.025001
    ZHANG Xinge, SUN Yalun, ZHU Bingcheng, et al. A metasurface-based light-to-microwave transmitter for hybrid wireless communications[J]. Light:Science & Applications, 2022, 11(1): 126. doi: 10.1038/s41377-022-00817-5
    MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light:Science & Applications, 2019, 8(1): 98. doi: 10.1038/s41377-019-0205-3
    ZHANG Xinge, SUN Yalun, YU Qian, et al. Smart doppler cloak operating in broad band and full polarizations[J]. Advanced Materials, 2021, 33(17): 2007966. doi: 10.1002/adma.202007966
    MA Qian, HONG Qiaoru, GAO Xinxin, et al. Smart sensing metasurface with self-defined functions in dual polarizations[J]. Nanophotonics, 2020, 9(10): 3271–3278. doi: 10.1515/nanoph-2020-0052
    YU Qian, ZHENG Yining, GU Ze, et al. Self-adaptive metasurface platform based on computer vision[J]. Optics Letters, 2021, 46(15): 3520–3523. doi: 10.1364/OL.427527
    LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light:Science & Applications, 2019, 8(1): 97. doi: 10.1038/s41377-019-0209-z
    WANG Jiawei, HUANG Ziai, XIAO Qiang, et al. High‐precision direction‐of‐arrival estimations using digital programmable metasurface[J]. Advanced Intelligent Systems, , 2021, 4(4): 2100164. doi: 10.1002/aisy.202100164
    WAN Xiang, HUANG Ziai, WANG Jiawei, et al. Joint radar and communication empowered by digital programmable metasurface[J]. Advanced Intelligent Systems, 2022: 2200083. doi: 10.1002/aisy.202200083
    LIU Che, MA Qian, LUO Zhangjie, et al. A programmable diffractive deep neural network based on a digital-coding metasurface array[J]. Nature Electronics, 2022, 5(2): 113–122. doi: 10.1038/s41928-022-00719-9
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(311) PDF downloads(172) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint