| Citation: | JIANG Weixiang, TIAN Hanwei, SONG Chao, et al. Digital coding metasurfaces: toward programmable and smart manipulations of electromagnetic functions[J]. Journal of Radars, 2022, 11(6): 1003–1019. doi: 10.12000/JR22167 | 
	                | [1] | 
					 SHELBY R A, SMITH D R, and SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77–79. doi:  10.1126/science.1058847 
						
					 | 
			
| [2] | 
					 SILVEIRINHA M and ENGHETA N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials[J]. Physical Review Letters, 2006, 97(15): 157403. doi:  10.1103/PhysRevLett.97.157403 
						
					 | 
			
| [3] | 
					 LIU Ruopeng, CHENG Qiang, HAND T, et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies[J]. Physical Review Letters, 2008, 100(2): 023903. doi:  10.1103/PhysRevLett.100.023903 
						
					 | 
			
| [4] | 
					 SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980. doi:  10.1126/science.1133628 
						
					 | 
			
| [5] | 
					 JIANG Weixiang, QIU Chengwei, HAN Tiancheng, et al. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials, 2013, 25(48): 6963–6968. doi:  10.1002/adma.201303657 
						
					 | 
			
| [6] | 
					 JIANG Weixiang, GE Shuo, HAN Tiancheng, et al. Shaping 3D path of electromagnetic waves using gradient-refractive-index metamaterials[J]. Advanced Science, 2016, 3(8): 1600022. doi:  10.1002/advs.201600022 
						
					 | 
			
| [7] | 
					 CHEN Xi, MA Huifeng, ZOU Xiaying, et al. Three-dimensional broadband and high-directivity lens antenna made of metamaterials[J]. Journal of Applied Physics, 2011, 110(4): 044904. doi:  10.1063/1.3622596 
						
					 | 
			
| [8] | 
					 ZHANG Na, JIANG Weixiang, MA Huifeng, et al. Compact high-performance lens antenna based on impedance-matching gradient-index metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(2): 1323–1328. doi:  10.1109/TAP.2018.2880115 
						
					 | 
			
| [9] | 
					 TIAN Hanwei, JIANG Weixiang, LI Xin, et al. An ultrawideband and high-gain antenna based on 3-D impedance-matching metamaterial lens[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(6): 3084–3093. doi:  10.1109/TAP.2020.3037751 
						
					 | 
			
| [10] | 
					 YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi:  10.1126/science.1210713 
						
					 | 
			
| [11] | 
					 MA Qian, SHI Chuanbo, BAI Guodong, et al. Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit[J]. Advanced Optical Materials, 2017, 5(23): 1700548. doi:  10.1002/adom.201700548 
						
					 | 
			
| [12] | 
					 SUN Shulin, HE Qiong, XIAO Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431. doi:  10.1038/NMAT3292 
						
					 | 
			
| [13] | 
					 ZHU H L, CHEUNG S W, CHUNG K L, et al. Linear-to-circular polarization conversion using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4615–4623. doi:  10.1109/TAP.2013.2267712 
						
					 | 
			
| [14] | 
					 XU Peng, WANG Guichen, CAI Xiao, et al. Design and optimization of high-efficiency meta-devices based on the equivalent circuit model and theory of electromagnetic power energy storage[J]. Journal of Physics D:Applied Physics, 2022, 55(19): 195303. doi:  10.1088/1361-6463/ac4e34 
						
					 | 
			
| [15] | 
					 WANG Zhuochao, DING Xumin, ZHANG Kuang, et al. Huygens metasurface holograms with the modulation of focal energy distribution[J]. Advanced Optical Materials, 2018, 6(12): 1800121. doi:  10.1002/adom.201800121 
						
					 | 
			
| [16] | 
					 ZHENG Guoxing, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308–312. doi:  10.1038/NNANO.2015.2 
						
					 | 
			
| [17] | 
					 ESTAKHRI N M and ALÙ A. Wave-front transformation with gradient metasurfaces[J]. Physical Review X, 2016, 6(4): 041008. doi:  10.1103/PhysRevX.6.041008 
						
					 | 
			
| [18] | 
					 ASADCHY V S, ALBOOYEH M, TCVETKOVA S N, et al. Perfect control of reflection and refraction using spatially dispersive metasurfaces[J]. Physical Review B, 2016, 94(7): 075142. doi:  10.1103/PhysRevB.94.075142 
						
					 | 
			
| [19] | 
					 ZHOU Jiafeng, ZHANG Pei, HAN Jiaqi, et al. Metamaterials and metasurfaces for wireless power transfer and energy harvesting[J]. Proceedings of the IEEE, 2022, 110(1): 31–55. doi:  10.1109/JPROC.2021.3127493 
						
					 | 
			
| [20] | 
					 LI Long, ZHANG Xuanming, SONG Chaoyun, et al. Compact dual-band, wide-angle, polarization-angle-independent rectifying metasurface for ambient energy harvesting and wireless power transfer[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(3): 1518–1528. doi:  10.1109/TMTT.2020.3040962 
						
					 | 
			
| [21] | 
					 SHI Yan, MENG Haoxuan, and WANG Huajie. Polarization conversion metasurface design based on characteristic mode rotation and its application into wideband and miniature antennas with a low radar cross section[J]. Optics Express, 2021, 29(5): 6794–6809. doi:  10.1364/oe.416976 
						
					 | 
			
| [22] | 
					 LIU Shuo, CUI Tiejun, XU Quan, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light:Science&Applications, 2016, 5(5): e16076. doi:  10.1038/lsa.2016.76 
						
					 | 
			
| [23] | 
					 LIU Shuo, CUI Tiejun, NOOR A, et al. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves[J]. Light:Science&Applications, 2018, 7(5): 18008. doi:  10.1038/lsa.2018.8 
						
					 | 
			
| [24] | 
					 TIAN Hanwei, JIANG Weixiang, LI Xin, et al. Generation of high-order orbital angular momentum beams and split beams simultaneously by employing anisotropic coding metasurfaces[J]. Journal of Optics, 2019, 21(6): 065103. doi:  10.1088/2040-8986/ab16b9 
						
					 | 
			
| [25] | 
					 ZHANG Lei, LIU Shuo, LI Lianlin, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces[J]. ACS Applied Materials&Interfaces, 2017, 9(41): 36447–36455. doi:  10.1021/acsami.7b12468 
						
					 | 
			
| [26] | 
					 MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi:  10.1103/PhysRevLett.118.113901 
						
					 | 
			
| [27] | 
					 GOU Yue, MA Huifeng, WU Liangwei, et al. Broadband spin-selective wavefront manipulations based on pancharatnam-berry coding metasurfaces[J]. ACS Omega, 2021, 6(44): 30019–30026. doi:  10.1021/acsomega.1c04733 
						
					 | 
			
| [28] | 
					 BAI Guodong, MA Qian, IQBAL S, et al. Multitasking shared aperture enabled with multiband digital coding metasurface[J]. Advanced Optical Materials, 2018, 6(21): 1800657. doi:  10.1002/adom.201800657 
						
					 | 
			
| [29] | 
					 XIE Rensheng, XIN Minbo, CHEN Shiguo, et al. Frequency-multiplexed complex-amplitude meta-devices based on bispectral 2-bit coding meta-atoms[J]. Advanced Optical Materials, 2020, 8(24): 2000919. doi:  10.1002/adom.202000919 
						
					 | 
			
| [30] | 
					 KAMALI S M, ARBABI E, ARBABI A, et al. Angle-multiplexed metasurfaces: Encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4): 041056. doi:  10.1103/PhysRevX.7.041056 
						
					 | 
			
| [31] | 
					 QIU Meng, JIA Min, MA Shaojie, et al. Angular dispersions in terahertz metasurfaces: Physics and applications[J].Physical Review Applied, 2018, 9(5): 054050. doi:  10.1103/PhysRevApplied.9.054050 
						
					 | 
			
| [32] | 
					 ZHANG Xiyue, LI Qi, LIU Feifei, et al. Controlling angular dispersions in optical metasurfaces[J]. Light:Science&Applications, 2020, 9(1): 76. doi:  10.1038/s41377-020-0313-0 
						
					 | 
			
| [33] | 
					 ZHANG Lei, WU Ruiyuan, BAI Guodong, et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves[J]. Advanced Functional Materials, 2018, 28(33): 1802205. doi:  10.1002/adfm.201802205 
						
					 | 
			
| [34] | 
					 WU Ruiyuan, ZHANG Lei, BAO Lei, et al. Digital metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations[J]. Advanced Optical Materials, 2019, 7(8): 1801429. doi:  10.1002/adom.201801429 
						
					 | 
			
| [35] | 
					 BAO Lei, FU Xiaojian, WU Ruiyuan, et al. Full-space manipulations of electromagnetic wavefronts at two frequencies by encoding both amplitude and phase of metasurface[J]. Advanced Materials Technologies, 2021, 6(4): 2001032. doi:  10.1002/admt.202001032 
						
					 | 
			
| [36] | 
					 WU Liangwei, MA Huifeng, GOU Yue, et al. Multitask bidirectional digital coding metasurface for independent controls of multiband and full-space electromagnetic waves[J]. Nanophotonics, 2022, 11(12): 2977–2987. doi:  10.1515/nanoph-2022-0190 
						
					 | 
			
| [37] | 
					 CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science&Applications, 2014, 3(10): e218. doi:  10.1038/lsa.2014.99 
						
					 | 
			
| [38] | 
					 GIOVAMPAOLA G D and ENGHETA N. Digital metamaterials[J]. Nature Materials, 2014, 13(12): 1115–1121. doi:  10.1038/nmat4082 
						
					 | 
			
| [39] | 
					 JING Hongbo, MA Qian, BAI Guodong, et al. Anomalously perfect reflections based on 3-bit coding metasurfaces[J]. Advanced Optical Materials, 2019, 7(9): 1801742. doi:  10.1002/adom.201801742 
						
					 | 
			
| [40] | 
					 CUI Tiejun, LIU Shuo, and LI Lianlin. Information entropy of coding metasurface[J]. Light:Science&Applications, 2016, 5(11): e16172. doi:  10.1038/lsa.2016.172 
						
					 | 
			
| [41] | 
					 LIU Shuo, CUI Tiejun, ZHANG Lei, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 2016, 3(10): 1600156. doi:  10.1002/advs.201600156 
						
					 | 
			
| [42] | 
					 WU Ruiyuan, SHI Chuanbo, LIU Shuo, et al. Addition theorem for digital coding metamaterials[J]. Advanced Optical Materials, 2018, 6(5): 1701236. doi:  10.1002/adom.201701236 
						
					 | 
			
| [43] | 
					 HAN Jiaqi, LI Long, MA Xiangjin, et al. Adaptively smart wireless power transfer using 2-Bit programmable metasurface[J]. IEEE Transactions on Industrial Electronics, 2022, 69(8): 8524–8534. doi:  10.1109/TIE.2021.3105988 
						
					 | 
			
| [44] | 
					 ZHU BoO, ZHAO Junming, and FENG Yijun. Active impedance metasurface with full 360° reflection phase tuning[J]. Scientific Reports, 2013, 3(1): 3059. doi:  10.1038/srep03059 
						
					 | 
			
| [45] | 
					 HUANG Cheng, ZHANG Changlei, YANG Jianing, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485. doi:  10.1002/adom.201700485 
						
					 | 
			
| [46] | 
					 TIAN Hanwei, ZHANG Xinge, JIANG Weixiang, et al. Programmable controlling of multiple spatial harmonics via a nonlinearly phased grating metasurface[J]. Advanced Functional Materials, 2022, 32(31): 2203120. doi:  10.1002/adfm.202203120 
						
					 | 
			
| [47] | 
					 CHEN Lei, MA Qian, JING Hongbo, et al. Space-energy digital-coding metasurface based on an active amplifier[J]. Physical Review Applied, 2019, 11(5): 054051. doi:  10.1103/PhysRevApplied.11.054051 
						
					 | 
			
| [48] | 
					 MA Qian, CHEN Lei, JING Hongbo, et al. Controllable and programmable nonreciprocity based on detachable digital coding metasurface[J]. Advanced Optical Materials, 2019, 7(24): 1901285. doi:  10.1002/adom.201901285 
						
					 | 
			
| [49] | 
					 TARAVATI S and ELEFTHERIADES G V. Full-duplex reflective beamsteering metasurface featuring magnetless nonreciprocal amplification[J]. Nature Communications, 2021, 12(1): 4414. doi:  10.1038/s41467-021-24749-7 
						
					 | 
			
| [50] | 
					 WANG Xin, HAN Jiaqi, TIAN Shuncheng, et al. Amplification and manipulation of nonlinear electromagnetic waves and enhanced nonreciprocity using transmissive space-time-coding metasurface[J]. Advanced Science, 2022, 9(11): 2105960. doi:  10.1002/advs.202105960 
						
					 | 
			
| [51] | 
					 WANG Qiang, ZHANG Xinge, TIAN Hanwei, et al. Millimeter-wave digital coding metasurfaces based on nematic liquid crystals[J]. Advanced Theory and Simulations, 2019, 2(12): 1900141. doi:  10.1002/adts.201900141 
						
					 | 
			
| [52] | 
					 WU Jingbo, SHEN Ze, GE Shijun, et al. Liquid crystal programmable metasurface for terahertz beam steering[J]. Applied Physics Letters, 116(13): 131104. 
						
					 | 
			
| [53] | 
					 LIU Chenxi, YANG Fei, FU Xiaojian, et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals[J]. Advanced Optical Materials, 2021, 9(22): 2100932. doi:  10.1002/adom.202100932 
						
					 | 
			
| [54] | 
					 CHEN Hao, LU Weibing, LIU Zhenguo, et al. Microwave programmable graphene metasurface[J]. ACS Photonics, 2020, 7(6): 1425–1435. doi:  10.1021/acsphotonics.9b01807 
						
					 | 
			
| [55] | 
					 CONG Longqing, PITCHAPPA P, WANG Nan, et al. Electrically programmable terahertz diatomic metamolecules for chiral optical control[J]. Research, 2019, 2019: 7084251. doi:  10.34133/2019/7084251 
						
					 | 
			
| [56] | 
					 MANJAPPA M, PITCHAPPA P, SINGH N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies[J]. Nature Communications, 2018, 9(1): 4056. doi:  10.1038/s41467-018-06360-5 
						
					 | 
			
| [57] | 
					 YANG Weixu, CHEN Ke, ZHENG Yilin, et al. Angular-adaptive reconfigurable spin-locked metasurface retroreflector[J]. Advanced Science, 2021, 8(21): 2100885. doi:  10.1002/advs.202100885 
						
					 | 
			
| [58] | 
					 CHEN Benwen, WU Jingbo, LI Weili, et al. Programmable terahertz metamaterials with non-volatile memory[J]. Laser&Photonics Reviews, 2022, 16(4): 2100472. doi:  10.1002/lpor.202100472 
						
					 | 
			
| [59] | 
					 GUO Jinying, WANG Teng, ZHAO Huan, et al. Reconfigurable terahertz metasurface pure phase holograms[J]. Advanced optical materials, 2019, 7(10): 1801696. doi:  10.1002/adom.201801696 
						
					 | 
			
| [60] | 
					 IMANI M F, ABADAL S, and DEL HOUGNE P. Metasurface-programmable wireless network-on-chip[J]. Advanced Science, 2022, 9(26): 2201458. doi:  10.1002/advs.202201458 
						
					 | 
			
| [61] | 
					 VENKATESH S, LU Xuyang, SAEIDI H, et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips[J]. Nature Electronics, 2020, 3(12): 785–793. doi:  10.1038/s41928-020-00497-2 
						
					 | 
			
| [62] | 
					 YANG Jin, CHEN Shangtong, CHEN Mao, et al. Folded transmitarray antenna with circular polarization based on metasurface[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 806–814. doi:  10.1109/TAP.2020.3016170 
						
					 | 
			
| [63] | 
					 LI He, LI Yunbo, SHEN Jialin, et al. Low-profile electromagnetic holography by using coding Fabry-Perot type metasurface with in-plane feeding[J]. Advanced Optical Materials, 2020, 8(9): 1902057. doi:  10.1002/adom.201902057 
						
					 | 
			
| [64] | 
					 XU Peng, TIAN Hanwei, JIANG Weixiang, et al. Phase and polarization modulations using radiation-type metasurfaces[J]. Advanced Optical Materials, 2021, 9(16): 2100159. doi:  10.1002/adom.202100159 
						
					 | 
			
| [65] | 
					 XU Peng, TIAN Hanwei, CAI Xiao, et al. Radiation-type metasurfaces for advanced electromagnetic manipulation[J]. Advanced Functional Materials, 2021, 31(25): 2100569. doi:  10.1002/adfm.202100569 
						
					 | 
			
| [66] | 
					 BAI Lin, ZHANG Xin’ge, WANG Qiang, et al. Dual-band reconfigurable metasurface-assisted Fabry-Pérot antenna with high-gain radiation and low scattering[J]. IET Microwaves,Antennas&Propagation, 2020, 14(15): 1933–1942. doi:  10.1049/iet-map.2020.0415 
						
					 | 
			
| [67] | 
					 WANG Zhenglong, GE Yuehe, PU Jixiong, et al. 1 bit electronically reconfigurable folded reflectarray antenna based on p-i-n diodes for wide-angle beam-scanning applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(9): 6806–6810. doi:  10.1109/TAP.2020.2975265 
						
					 | 
			
| [68] | 
					 LIU Baiyang, WONG Saiwai, TAM K W, et al. Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1068–1076. doi:  10.1109/TAP.2021.3111214 
						
					 | 
			
| [69] | 
					 BAI Xudong, ZHANG Fuli, SUN Li, et al. Radiation-type programmable metasurface for direct manipulation of electromagnetic emission[J]. Laser&Photonics Reviews, 2022, 16(11): 2200140. doi:  10.1002/lpor.202200140 
						
					 | 
			
| [70] | 
					 HONG Qiaoru, MA Qian, GAO Xinxin, et al. Programmable amplitude-coding metasurface with multifrequency modulations[J]. Advanced Intelligent Systems, 2020, 3(8): 2000260. doi:  10.1002/aisy.202000260 
						
					 | 
			
| [71] | 
					 MA Qian, HONG Qiaoru, BAI Guodong, et al. Editing arbitrarily linear polarizations using programmable metasurface[J]. Physical Review Applied, 2020, 13(2): 021003. doi:  10.1103/PhysRevApplied.13.021003 
						
					 | 
			
| [72] | 
					 ZHANG Xinge, YU Qian, JIANG Weixiang, et al. Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382. doi:  10.1002/advs.201903382 
						
					 | 
			
| [73] | 
					 CHEN Ke, ZHANG Na, DING Guowen, et al. Active anisotropic coding metasurface with independent real-time reconfigurability for dual polarized waves[J]. Advanced Materials Technologies, 2020, 5(2): 1900930. doi:  10.1002/admt.201900930 
						
					 | 
			
| [74] | 
					 BAO Lei, MA Qian, WU Ruiyuan, et al. Programmable reflection-transmission shared-aperture metasurface for real-time control of electromagnetic waves in full space[J]. Advanced Science, 2021, 8(15): 2100149. doi:  10.1002/advs.202100149 
						
					 | 
			
| [75] | 
					 HU Qi, ZHAO Jianmin, CHEN Ke, et al. An intelligent programmable omni-metasurface[J]. Laser&Photonics Reviews, 2022, 16(6): 2100718. doi:  10.1002/lpor.202100718 
						
					 | 
			
| [76] | 
					 CHEN Lei, MA Qian, NIE Qianfan, et al. Dual-polarization programmable metasurface modulator for near-field information encoding and transmission[J]. Photonics Research, 2021, 9(2): 116–124. doi:  10.1364/PRJ.412052 
						
					 | 
			
| [77] | 
					 WANG Hailin, ZHANG Yankai, ZHANG Taiyi, et al. Broadband and programmable amplitude-phase-joint-coding information metasurface[J]. ACS Applied Materials&Interfaces, 2022, 14(25): 29431–29440. doi:  10.1021/acsami.2c05907 
						
					 | 
			
| [78] | 
					 LIU Guangyao, LI Long, HAN Jiaqi, et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Applied Materials&Interfaces, 2020, 12(20): 23554–23564. doi:  10.1021/acsami.0c02467 
						
					 | 
			
| [79] | 
					 ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi:  10.1093/nsr/nwy135 
						
					 | 
			
| [80] | 
					 DAI Junyan, TANG Wangkai, YANG Liuxi, et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1618–1627. doi:  10.1109/TAP.2019.2952460 
						
					 | 
			
| [81] | 
					 CHEN Mingzheng, TANG Wankai, DAI Junyan, et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface[J]. National Science Review, 2022, 9(1): nwab134. doi:  10.1093/nsr/nwab134 
						
					 | 
			
| [82] | 
					 ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi:  10.1038/s41467-018-06802-0 
						
					 | 
			
| [83] | 
					 ZHANG Lei, CHEN Mingzheng, TANG Wangkai, et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces[J]. Nature Electronics, 2021, 4(3): 218–227. doi:  10.1038/s41928-021-00554-4 
						
					 | 
			
| [84] | 
					 ZHANG Xinge, TANG Wenxuan, JIANG Weixiang, et al. Light-controllable digital coding metasurfaces[J]. Advanced Science, 2018, 5(11): 1801028. doi:  10.1002/advs.201801028 
						
					 | 
			
| [85] | 
					 ZHANG Xinge, JIANG Weixiang, and CUI Tiejun. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity[J]. Applied Physics Letters, 2018, 113(9): 091601. doi:  10.1063/1.5045718 
						
					 | 
			
| [86] | 
					 SUN Yalun, ZHANG Xinge, YU Qian, et al. Infrared-controlled programmable metasurface[J]. Science Bulletin, 2020, 65(11): 883–888. doi:  10.1016/j.scib.2020.03.016 
						
					 | 
			
| [87] | 
					 ZHANG Xinge, JIANG Weixiang, JIANG Haolin, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165–171. doi:  10.1038/s41928-020-0380-5 
						
					 | 
			
| [88] | 
					 ZHANG Xinge, SUN Yalun, ZHU Bingcheng, et al. Light-controllable time-domain digital coding metasurfaces[J]. Advanced Photonics, 2022, 4(2): 025001. doi:  10.1117/1.AP.4.2.025001 
						
					 | 
			
| [89] | 
					 ZHANG Xinge, SUN Yalun, ZHU Bingcheng, et al. A metasurface-based light-to-microwave transmitter for hybrid wireless communications[J]. Light:Science&Applications, 2022, 11(1): 126. doi:  10.1038/s41377-022-00817-5 
						
					 | 
			
| [90] | 
					 MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light:Science&Applications, 2019, 8(1): 98. doi:  10.1038/s41377-019-0205-3 
						
					 | 
			
| [91] | 
					 ZHANG Xinge, SUN Yalun, YU Qian, et al. Smart doppler cloak operating in broad band and full polarizations[J]. Advanced Materials, 2021, 33(17): 2007966. doi:  10.1002/adma.202007966 
						
					 | 
			
| [92] | 
					 MA Qian, HONG Qiaoru, GAO Xinxin, et al. Smart sensing metasurface with self-defined functions in dual polarizations[J]. Nanophotonics, 2020, 9(10): 3271–3278. doi:  10.1515/nanoph-2020-0052 
						
					 | 
			
| [93] | 
					 YU Qian, ZHENG Yining, GU Ze, et al. Self-adaptive metasurface platform based on computer vision[J]. Optics Letters, 2021, 46(15): 3520–3523. doi:  10.1364/OL.427527 
						
					 | 
			
| [94] | 
					 LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light:Science&Applications, 2019, 8(1): 97. doi:  10.1038/s41377-019-0209-z 
						
					 | 
			
| [95] | 
					 WANG Jiawei, HUANG Ziai, XIAO Qiang, et al. High‐precision direction‐of‐arrival estimations using digital programmable metasurface[J]. Advanced Intelligent Systems,  
						
					 | 
			
| [96] | 
					 WAN Xiang, HUANG Ziai, WANG Jiawei, et al. Joint radar and communication empowered by digital programmable metasurface[J]. Advanced Intelligent Systems, 2022: 2200083. doi:  10.1002/aisy.202200083 
						
					 | 
			
| [97] | 
					 LIU Che, MA Qian, LUO Zhangjie, et al. A programmable diffractive deep neural network based on a digital-coding metasurface array[J]. Nature Electronics, 2022, 5(2): 113–122. doi:  10.1038/s41928-022-00719-9 
						
					 |