| Citation: | LI Yuxi, ZHU Ruichao, SUI Sai, et al. Dynamic electromagnetic control technology and its application based on metasurface[J]. Journal of Radars, 2025, 14(3): 664–696. doi: 10.12000/JR24259 | 
	                | [1] | 
					 ZHANG Xinge, TANG Wenxuan, JIANG Weixiang, et al. Light-controllable digital coding metasurfaces[J]. Advanced Science, 2018, 5(11): 1801028. doi:  10.1002/advs.201801028. 
						
					 | 
			
| [2] | 
					 JIANG Shan, LIU Xuejun, LIU Jianpeng, et al. Flexible metamaterial electronics[J]. Advanced Materials, 2022, 34(52): 2200070. doi:  10.1002/adma.202200070. 
						
					 | 
			
| [3] | 
					 CHEN Tian, PAULY M, and REIS P M. A reprogrammable mechanical metamaterial with stable memory[J]. Nature, 2021, 589(7842): 386–390. doi:  10.1038/s41586-020-03123-5. 
						
					 | 
			
| [4] | 
					 YU Peng, BESTEIRO L V, HUANG Yongjun, et al. Broadband metamaterial absorbers[J]. Advanced Optical Materials, 2019, 7(3): 1800995. doi:  10.1002/adom.201800995. 
						
					 | 
			
| [5] | 
					 SHEN Suling, LIU Xudong, SHEN Yaochun, et al. Recent advances in the development of materials for terahertz metamaterial sensing[J]. Advanced Optical Materials, 2022, 10(1): 2101008. doi:  10.1002/adom.202101008. 
						
					 | 
			
| [6] | 
					 MEI Tie, MENG Zhiqiang, ZHAO Kejie, et al. A mechanical metamaterial with reprogrammable logical functions[J]. Nature Communications, 2021, 12(1): 7234. doi:  10.1038/s41467-021-27608-7. 
						
					 | 
			
| [7] | 
					 ZHENG Xiaoyang, ZHANG Xubo, CHEN Tate, et al. Deep learning in mechanical metamaterials: From prediction and generation to inverse design[J]. Advanced Materials, 2023, 35(45): 2302530. doi:  10.1002/adma.202302530. 
						
					 | 
			
| [8] | 
					 CUI Tiejun. Microwave metamaterials[J]. National Science Review, 2018, 5(2): 134–136. doi:  10.1093/nsr/nwx133. 
						
					 | 
			
| [9] | 
					 WANG Yifan, NIU Jiarong, JIN Xin, et al. Molecularly resonant metamaterials for broad-band electromagnetic stealth[J]. Advanced Science, 2023, 10(19): 2301170. doi:  10.1002/advs.202301170. 
						
					 | 
			
| [10] | 
					 KIM J, HAN K, and HAHN J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Scientific Reports, 2017, 7(1): 6740. doi:  10.1038/s41598-017-06749-0. 
						
					 | 
			
| [11] | 
					 PADILLA W J and AVERITT R D. Imaging with metamaterials[J]. Nature Reviews Physics, 2022, 4(2): 85–100. doi:  10.1038/s42254-021-00394-3. 
						
					 | 
			
| [12] | 
					 WATTS C M, NADELL C C, MONTOYA J, et al. Frequency-division-multiplexed single-pixel imaging with metamaterials[J]. Optica, 2016, 3(2): 133–138. doi:  10.1364/OPTICA.3.000133. 
						
					 | 
			
| [13] | 
					 LUO Yong, QIN Kewei, KE Hao, et al. Active metamaterial antenna with beam scanning manipulation based on a digitally modulated array factor method[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 1198–1203. doi:  10.1109/TAP.2020.3010941. 
						
					 | 
			
| [14] | 
					 PENG Yugui, SHEN Yaxi, GENG Zhiguo, et al. Super-resolution acoustic image montage via a biaxial metamaterial lens[J]. Science Bulletin, 2020, 65(12): 1022–1029. doi:  10.1016/j.scib.2020.03.018. 
						
					 | 
			
| [15] | 
					 LEE G Y, HONG J Y, HWANG S, et al. Metasurface eyepiece for augmented reality[J]. Nature Communications, 2018, 9(1): 4562. doi:  10.1038/s41467-018-07011-5. 
						
					 | 
			
| [16] | 
					 DAI Xuemei, DONG Fengliang, ZHANG Kun, et al. Holographic super-resolution metalens for achromatic sub-wavelength focusing[J]. ACS Photonics, 2021, 8(8): 2294–2303. doi:  10.1021/acsphotonics.1c00411. 
						
					 | 
			
| [17] | 
					 ESFANDIARI M, LALBAKHSH A, SHEHNI P N, et al. Recent and emerging applications of Graphene-based metamaterials in electromagnetics[J]. Materials & Design, 2022, 221: 110920. doi:  10.1016/j.matdes.2022.110920. 
						
					 | 
			
| [18] | 
					 DORRAH A H, RUBIN N A, ZAIDI A, et al. Metasurface optics for on-demand polarization transformations along the optical path[J]. Nature Photonics, 2021, 15(4): 287–296. doi:  10.1038/s41566-020-00750-2. 
						
					 | 
			
| [19] | 
					 QIU Tianshuo, SHI Xin, WANG Jiafu, et al. Deep learning: A rapid and efficient route to automatic metasurface design[J]. Advanced Science, 2019, 6(12): 1900128. doi:  10.1002/advs.201900128. 
						
					 | 
			
| [20] | 
					 WANG Hailin, ZHANG Yankai, ZHANG Taiyi, et al. Broadband and programmable amplitude-phase-joint-coding information metasurface[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 29431–29440. doi:  10.1021/acsami.2c05907. 
						
					 | 
			
| [21] | 
					 CUI Tiejun. Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves[J]. Journal of Optics, 2017, 19(8): 084004. doi:  10.1088/2040-8986/aa7009. 
						
					 | 
			
| [22] | 
					 ZHAO Ruizhe, HUANG Lingling, and WANG Yongtian. Recent advances in multi-dimensional metasurfaces holographic technologies[J]. PhotoniX, 2020, 1(1): 20. doi:  10.1186/s43074-020-00020-y. 
						
					 | 
			
| [23] | 
					 ZAHRA S, MA Liang, WANG Wenjiao, et al. Electromagnetic metasurfaces and reconfigurable metasurfaces: A review[J]. Frontiers in Physics, 2021, 8: 593411. doi:  10.3389/fphy.2020.593411. 
						
					 | 
			
| [24] | 
					 LI Jie, ZHENG Chenglong, LI Jitao, et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface[J]. Photonics Research, 2021, 9(10): 1939–1947. doi:  10.1364/PRJ.431019. 
						
					 | 
			
| [25] | 
					 HE An, GUO Xuhan, WANG Ting, et al. Ultracompact fiber-to-chip metamaterial edge coupler[J]. ACS Photonics, 2021, 8(11): 3226–3233. doi:  10.1021/acsphotonics.1c00993. 
						
					 | 
			
| [26] | 
					 ABDOLRAZZAGHI M, DANESHMAND M, and IYER A K. Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(4): 1843–1855. doi:  10.1109/TMTT.2018.2791942. 
						
					 | 
			
| [27] | 
					 HU Jingpei, ZHAO Xiaonan, LIN Yu, et al. All-dielectric metasurface circular dichroism waveplate[J]. Scientific Reports, 2017, 7(1): 41893. doi:  10.1038/srep41893. 
						
					 | 
			
| [28] | 
					 BIBBÒ L, KHAN K, LIU Qiang, et al. Tunable narrowband antireflection optical filter with a metasurface[J]. Photonics Research, 2017, 5(5): 500–506. doi:  10.1364/PRJ.5.000500. 
						
					 | 
			
| [29] | 
					 YUE Wenjing, GAO Song, LEE S S, et al. Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors[J]. Laser & Photonics Reviews, 2017, 11(3): 1600285. doi:  10.1002/lpor.201600285. 
						
					 | 
			
| [30] | 
					 TANG Shiwei, LI Xike, PAN Weikang, et al. High-efficiency broadband vortex beam generator based on transmissive metasurface[J]. Optics Express, 2019, 27(4): 4281–4291. doi:  10.1364/OE.27.004281. 
						
					 | 
			
| [31] | 
					 ZHANG Liang, GUO Jie, and DING Tongyu. Ultrathin dual-mode vortex beam generator based on anisotropic coding metasurface[J]. Scientific Reports, 2021, 11(1): 5766. doi:  10.1038/s41598-021-85374-4. 
						
					 | 
			
| [32] | 
					 HE Xunjun, CHEN Guang, GENG Zhaoxin, et al. On-chip dynamic manipulation of terahertz spoof surface wavefronts with reconfigurable metasurfaces[J]. Optics Express, 2025, 33(4): 7927–7941. doi:  10.1364/OE.542534. 
						
					 | 
			
| [33] | 
					 WANG Meng, MA Huifeng, WU Liangwei, et al. Hybrid digital coding metasurface for independent control of propagating surface and spatial waves[J]. Advanced Optical Materials, 2019, 7(13): 1900478. doi:  10.1002/adom.201900478. 
						
					 | 
			
| [34] | 
					 CHEN Ke, FENG Yijun, MONTICONE F, et al. A reconfigurable active huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi:  10.1002/adma.201606422. 
						
					 | 
			
| [35] | 
					 FENG Rui, RATNI B, YI Jianjia, et al. Versatile metasurface platform for electromagnetic wave tailoring[J]. Photonics Research, 2021, 9(9): 1650–1659. doi:  10.1364/PRJ.428853. 
						
					 | 
			
| [36] | 
					 HU Qi, ZHAO Jianmin, CHEN Ke, et al. An intelligent programmable omni-metasurface[J]. Laser & Photonics Reviews, 2022, 16(6): 2100718. doi:  10.1002/lpor.202100718. 
						
					 | 
			
| [37] | 
					 ZHANG Xinge, SUN Yalun, HUANG Zhixiang, et al. A review of light-controlled programmable metasurfaces for remote microwave control and hybrid signal processing[J]. Engineering Reports, 2023, 5(9): e12658. doi:  10.1002/eng2.12658. 
						
					 | 
			
| [38] | 
					 LI Chong, JIANG Tianxi, HE Qingbo, et al. Smart metasurface shaft for vibration source identification with a single sensor[J]. Journal of Sound and Vibration, 2021, 493: 115836. doi:  10.1016/j.jsv.2020.115836. 
						
					 | 
			
| [39] | 
					 ZHANG Shuang. Intelligent metasurfaces: Digitalized, programmable, and intelligent platforms[J]. Light: Science & Applications, 2022, 11(1): 242. doi:  10.1038/s41377-022-00876-8. 
						
					 | 
			
| [40] | 
					 JIA Yuetian, QIAN Chao, FAN Zhixiang, et al. In situ customized illusion enabled by global metasurface reconstruction[J]. Advanced Functional Materials, 2022, 32(19): 2109331. doi:  10.1002/adfm.202109331. 
						
					 | 
			
| [41] | 
					 PITILAKIS A, TSILIPAKOS O, LIU Fu, et al. A multi-functional reconfigurable metasurface: Electromagnetic design accounting for fabrication aspects[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1440–1454. doi:  10.1109/TAP.2020.3016479. 
						
					 | 
			
| [42] | 
					 MA Yihan, LUO Qi, ZHANG Cheng, et al. Deep learning enables multifunctional metasurfaces design with mutual coupling estimation[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(11): 8443–8451. doi:  10.1109/TAP.2024.3443151. 
						
					 | 
			
| [43] | 
					 HOSSAIN M A, BAHCECI I, and CETINER B A. Parasitic layer-based radiation pattern reconfigurable antenna for 5G communications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6444–6452. doi:  10.1109/TAP.2017.2757962. 
						
					 | 
			
| [44] | 
					 JIN Guiping, LI Miaolan, LIU Dan, et al. A simple planar pattern-reconfigurable antenna based on arc dipoles[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(9): 1664–1668. doi:  10.1109/LAWP.2018.2862624. 
						
					 | 
			
| [45] | 
					 BRONCKERS L A, ROC’H A, and SMOLDERS A B. A new design method for frequency-reconfigurable antennas using multiple tuning components[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(12): 7285–7295. doi:  10.1109/TAP.2019.2930204. 
						
					 | 
			
| [46] | 
					 IQBAL A, SMIDA A, ABDULRAZAK L F, et al. Low-profile frequency reconfigurable antenna for heterogeneous wireless systems[J]. Electronics, 2019, 8(9): 976. doi:  10.3390/electronics8090976. 
						
					 | 
			
| [47] | 
					 REN Jian, ZHOU Zhao, WEI Zhaohui, et al. Radiation pattern and polarization reconfigurable antenna using dielectric liquid[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 8174–8179. doi:  10.1109/TAP.2020.2996811. 
						
					 | 
			
| [48] | 
					 NI Chun, CHEN Mingsheng, ZHANG Zhongxiang, et al. Design of frequency- and polarization-reconfigurable antenna based on the polarization conversion metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 78–81. doi:  10.1109/LAWP.2017.2775444. 
						
					 | 
			
| [49] | 
					 IQBAL A, SMIDA A, MALLAT N K, et al. Frequency and pattern reconfigurable antenna for emerging wireless communication systems[J]. Electronics, 2019, 8(4): 407. doi:  10.3390/electronics8040407. 
						
					 | 
			
| [50] | 
					 CHEN Shulin, QIN Peiyuan, LIN Wei, et al. Pattern-reconfigurable antenna with five switchable beams in elevation plane[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(3): 454–457. doi:  10.1109/LAWP.2018.2794990. 
						
					 | 
			
| [51] | 
					 CAO Junmei, MA Hongyu, XIE Shuhuan, et al. Highly efficient abnormal reflection via underwater acoustic metagratings[J]. Physical Review Applied, 2024, 21(3): 034015. doi:  10.1103/PhysRevApplied.21.034015. 
						
					 | 
			
| [52] | 
					 FANG Xiang, LUO Jie, WU Zhuang, et al. Reconfigurable coding metamaterial for enhancing RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(11): 8854–8861. doi:  10.1109/TAP.2023.3294752. 
						
					 | 
			
| [53] | 
					 CAI Ziru, WU Cuo, JIANG Jing, et al. Phase-change metasurface for switchable vector vortex beam generation[J]. Optics Express, 2021, 29(26): 42762–42771. doi:  10.1364/OE.444956. 
						
					 | 
			
| [54] | 
					 MA Wei, HOU Maojing, LUO Ruiqi, et al. Topologically-optimized on-chip metamaterials for ultra-short-range light focusing and mode-size conversion[J]. Nanophotonics, 2023, 12(6): 1189–1197. doi:  10.1515/nanoph-2023-0036. 
						
					 | 
			
| [55] | 
					 ZHOU Haoyang, ZHANG Sheng, WANG Shunjia, et al. Optically controlled dielectric metasurfaces for dynamic dual-mode modulation on terahertz waves[J]. Advanced Photonics, 2023, 5(2): 026005. doi:  10.1117/1.AP.5.2.026005. 
						
					 | 
			
| [56] | 
					 ZHANG Shoujun, CHEN Xieyu, LIU Kuan, et al. Nonvolatile reconfigurable terahertz wave modulator[J]. PhotoniX, 2022, 3(1): 7. doi:  10.1186/s43074-022-00053-5. 
						
					 | 
			
| [57] | 
					 POGREBNYAKOV A V, BOSSARD J A, TURPIN J P, et al. Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material[J]. Optical Materials Express, 2018, 8(8): 2264–2275. doi:  10.1364/OME.8.002264. 
						
					 | 
			
| [58] | 
					 REN Mengxin, WU Wei, CAI Wei, et al. Reconfigurable metasurfaces that enable light polarization control by light[J]. Light: Science & Applications, 2017, 6(6): e16254. doi:  10.1038/lsa.2016.254. 
						
					 | 
			
| [59] | 
					 KIM S J, KIM I, CHOI S, et al. Reconfigurable all-dielectric Fano metasurfaces for strong full-space intensity modulation of visible light[J]. Nanoscale Horizons, 2020, 5(7): 1088–1095. doi:  10.1039/D0NH00139B. 
						
					 | 
			
| [60] | 
					 XU Ziquan, LUO Hao, ZHU Huanzheng, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Letters, 2021, 21(12): 5269–5276. doi:  10.1021/acs.nanolett.1c01396. 
						
					 | 
			
| [61] | 
					 CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi:  10.1038/lsa.2014.99. 
						
					 | 
			
| [62] | 
					 ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi:  10.1038/s41467-018-06802-0. 
						
					 | 
			
| [63] | 
					 WANG Hailin, MA Huifeng, CHEN Mao, et al. A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves[J]. Advanced Functional Materials, 2021, 31(25): 2100275. doi:  10.1002/adfm.202100275. 
						
					 | 
			
| [64] | 
					 HUANG Lingling, ZHANG Shuang, and ZENTGRAF T. Metasurface holography: From fundamentals to applications[J]. Nanophotonics, 2018, 7(6): 1169–1190. doi:  10.1515/nanoph-2017-0118. 
						
					 | 
			
| [65] | 
					 RIVENSON Y, ZHANG Yibo, GÜNAYDIN H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 2018, 7(2): 17141. doi:  10.1038/lsa.2017.141. 
						
					 | 
			
| [66] | 
					 ZHU Ruichao, WANG Jiafu, FU Xinmin, et al. Deep-learning-empowered holographic metasurface with simultaneously customized phase and amplitude[J]. ACS Applied Materials & Interfaces, 2022, 14(42): 48303–48310. doi:  10.1021/acsami.2c15362. 
						
					 | 
			
| [67] | 
					 HAN H, PARK S, PARK H, et al. Low spurious, broadband reflection frequency modulation using an active metasurface[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(4): 359–362. doi:  10.1109/LMWC.2021.3127316. 
						
					 | 
			
| [68] | 
					 YANG Heng, HE Yuan, TONG Meisong, et al. A reflection-transmission multifunctional polarization conversion metasurface[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(6): 5099–5109. doi:  10.1109/TAP.2024.3400619. 
						
					 | 
			
| [69] | 
					 LI Weihan, MA Qian, LIU Che, et al. Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision[J]. Nature Communications, 2023, 14(1): 989. doi:  10.1038/s41467-023-36645-3. 
						
					 | 
			
| [70] | 
					 ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi:  10.1093/nsr/nwy135. 
						
					 | 
			
| [71] | 
					 DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi:  10.1002/admt.201900044. 
						
					 | 
			
| [72] | 
					 MA Qian, LIU Che, XIAO Qiang, et al. Information metasurfaces and intelligent metasurfaces[J]. Photonics Insights, 2022, 1(1): R01. doi:  10.3788/PI.2022.R01. 
						
					 | 
			
| [73] | 
					 LI Shangyang, LIU Zhouyang, FU Shilei, et al. Intelligent beamforming via physics-inspired neural networks on programmable metasurface[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4589–4599. doi:  10.1109/TAP.2022.3140891. 
						
					 | 
			
| [74] | 
					 JIA Yuetian, QIAN Chao, FAN Zhixiang, et al. A knowledge-inherited learning for intelligent metasurface design and assembly[J]. Light: Science & Applications, 2023, 12(1): 82. doi:  10.1038/s41377-023-01131-4. 
						
					 | 
			
| [75] | 
					 LIU Guodong, HU Wangsheng, HOU Wenying, et al. Indoor positioning and posture recognition of human body applying integrating-type intelligent metasurfaces based sensing system[J]. Advanced Materials Technologies, 2023, 8(22): 2301006. doi:  10.1002/admt.202301006. 
						
					 | 
			
| [76] | 
					 CHEN Benwen, WANG Xinru, LI Weili, et al. Electrically addressable integrated intelligent terahertz metasurface[J]. Science Advances, 2022, 8(41): eadd1296. doi:  10.1126/sciadv.add1296. 
						
					 | 
			
| [77] | 
					 LI Yuxi, WANG Jiafu, SUI Sai, et al. Simplistic framework of single-pixel-programmable metasurfaces integrated with a capsuled LED array[J]. Photonics Research, 2024, 12(5): 884–894. doi:  10.1364/PRJ.506044. 
						
					 | 
			
| [78] | 
					 REN Zhihao, CHANG Yuhua, MA Yiming, et al. Leveraging of MEMS technologies for optical metamaterials applications[J]. Advanced Optical Materials, 2020, 8(3): 1900653. doi:  10.1002/adom.201900653. 
						
					 | 
			
| [79] | 
					 CHANG Yuhua, WEI Jingxuan, and LEE C. Metamaterials-from fundamentals and MEMS tuning mechanisms to applications[J]. Nanophotonics, 2020, 9(10): 3049–3070. doi:  10.1515/nanoph-2020-0045. 
						
					 | 
			
| [80] | 
					 PITCHAPPA P, HO C P, CONG Longqing, et al. Reconfigurable digital metamaterial for dynamic switching of terahertz anisotropy[J]. Advanced Optical Materials, 2016, 4(3): 391–398. doi:  10.1002/adom.201500588. 
						
					 | 
			
| [81] | 
					 PITCHAPPA P, MANJAPPA M, HO C P, et al. Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices[J]. Applied Physics Letters, 2016, 108(11): 111102. doi:  10.1063/1.4943974. 
						
					 | 
			
| [82] | 
					 YANG Weixu, CHEN Ke, ZHENG Yilin, et al. Angular-adaptive reconfigurable spin-locked metasurface retroreflector[J]. Advanced Science, 2021, 8(21): 2100885. doi:  10.1002/advs.202100885. 
						
					 | 
			
| [83] | 
					 XU Ruijia and LIN Yusheng. Flexible and controllable metadevice using self-assembly MEMS actuator[J]. Nano Letters, 2021, 21(7): 3205–3210. doi:  10.1021/acs.nanolett.1c00391. 
						
					 | 
			
| [84] | 
					 XU Ruijia, XU Xiaocan, YANG Boru, et al. Actively logical modulation of MEMS-based terahertz metamaterial[J]. Photonics Research, 2021, 9(7): 1409–1415. doi:  10.1364/PRJ.420876. 
						
					 | 
			
| [85] | 
					 LALAS A X, KANTARTZIS N V, and TSIBOUKIS T D. Reconfigurable metamaterial components exploiting two-hot-arm electrothermal actuators[J]. Microsystem Technologies, 2015, 21(10): 2097–2107. doi:  10.1007/s00542-015-2407-9. 
						
					 | 
			
| [86] | 
					 SARAVANA JOTHI N S and HUNT A. Active mechanical metamaterial with embedded piezoelectric actuation[J]. APL Materials, 2022, 10(9): 091117. doi:  10.1063/5.0101420. 
						
					 | 
			
| [87] | 
					 MAVRIDOU M and FERESIDIS A P. Dynamically reconfigurable high impedance and frequency selective metasurfaces using piezoelectric actuators[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5190–5197. doi:  10.1109/TAP.2016.2617372. 
						
					 | 
			
| [88] | 
					 DOERGER S R and HARNETT C K. Force-amplified soft electromagnetic actuators[J]. Actuators, 2018, 7(4): 76. doi:  10.3390/act7040076. 
						
					 | 
			
| [89] | 
					 ZHOU Shengrui, LIANG Chao, MEI Ziqi, et al. Design and implementation of a flexible electromagnetic actuator for tunable terahertz metamaterials[J]. Micromachines, 2024, 15(2): 219. doi:  10.3390/mi15020219. 
						
					 | 
			
| [90] | 
					 MANJAPPA M, PITCHAPPA P, SINGH N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies[J]. Nature Communications, 2018, 9(1): 4056. doi:  10.1038/s41467-018-06360-5. 
						
					 | 
			
| [91] | 
					 DENG Yadong, MENG Chao, THRANE P C V, et al. MEMS-integrated metasurfaces for dynamic linear polarizers[J]. Optica, 2024, 11(3): 326–332. doi:  10.1364/OPTICA.515524. 
						
					 | 
			
| [92] | 
					 ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi:  10.1038/s41467-018-03155-6. 
						
					 | 
			
| [93] | 
					 ROY T, ZHANG Shuyan, JUNG I W, et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302. doi:  10.1063/1.5018865. 
						
					 | 
			
| [94] | 
					 HAN Zheyi, COLBURN S, MAJUMDAR A, et al. MEMS-actuated metasurface Alvarez lens[J]. Microsystems & Nanoengineering, 2020, 6(1): 79. doi:  10.1038/s41378-020-00190-6. 
						
					 | 
			
| [95] | 
					 MENG Chao, THRANE P C V, DING Fei, et al. Dynamic piezoelectric MEMS-based optical metasurfaces[J]. Science Advances, 2021, 7(26): eabg5639. doi:  10.1126/sciadv.abg5639. 
						
					 | 
			
| [96] | 
					 LI Jing, FAN Hongjie, YE Han, et al. Design of multifunctional tunable metasurface assisted by elastic substrate[J]. Nanomaterials, 2022, 12(14): 2387. doi:  10.3390/nano12142387. 
						
					 | 
			
| [97] | 
					 CHEN Fanqi, LIU Xiaojie, TIAN Yanpei, et al. Mechanically stretchable metamaterial with tunable mid-infrared optical properties[J]. Optics Express, 2021, 29(23): 37368–37375. doi:  10.1364/OE.439767. 
						
					 | 
			
| [98] | 
					 EE H S and AGARWAL R. et al. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818–2823. doi:  10.1021/acs.nanolett.6b00618. 
						
					 | 
			
| [99] | 
					 MALEK S C, EE H S, and AGARWAL R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 2017, 17(6): 3641–3645. doi:  10.1021/acs.nanolett.7b00807. 
						
					 | 
			
| [100] | 
					 ZHANG Chen, JING Jixiang, WU Yunkai, et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response[J]. ACS Nano, 2020, 14(2): 1418–1426. doi:  10.1021/acsnano.9b08228. 
						
					 | 
			
| [101] | 
					 FAN Xuanqian, LI Yuhang, CHEN Sihong, et al. Mechanical terahertz modulation by skin-like ultrathin stretchable metasurface[J]. Small, 2020, 16(37): 2002484. doi:  10.1002/smll.202002484. 
						
					 | 
			
| [102] | 
					 XU Zefeng and LIN Yusheng. A stretchable terahertz parabolic-shaped metamaterial[J]. Advanced Optical Materials, 2019, 7(19): 1900379. doi:  10.1002/adom.201900379. 
						
					 | 
			
| [103] | 
					 LI Binghui, SHI Lintao, and LIN Yusheng. Stretchable and tunable quartered split-ring resonator (QSRR) using terahertz metamaterial[J]. Optics & Laser Technology, 2024, 174: 110692. doi:  10.1016/j.optlastec.2024.110692. 
						
					 | 
			
| [104] | 
					 ZHOU Yunlei, WANG Shaolei, YIN Junyi, et al. Flexible metasurfaces for multifunctional interfaces[J]. ACS Nano, 2024, 18(4): 2685–2707. doi:  10.1021/acsnano.3c09310. 
						
					 | 
			
| [105] | 
					 XU Ruijia and LIN Yusheng. Actively MEMS-based tunable metamaterials for advanced and emerging applications[J]. Electronics, 2022, 11(2): 243. doi:  10.3390/electronics11020243. 
						
					 | 
			
| [106] | 
					 DAS B, YUN H S, PARK N, et al. A transformative metasurface based on zerogap embedded template[J]. Advanced Optical Materials, 2021, 9(11): 2002164. doi:  10.1002/adom.202002164. 
						
					 | 
			
| [107] | 
					 OVERVELDE J T B, DE JONG T A, SHEVCHENKO Y, et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom[J]. Nature Communications, 2016, 7(1): 10929. doi:  10.1038/ncomms10929. 
						
					 | 
			
| [108] | 
					 LI Min, SHEN Lian, JING Liqiao, et al. Origami metawall: Mechanically controlled absorption and deflection of light[J]. Advanced Science, 2019, 6(23): 1901434. doi:  10.1002/advs.201901434. 
						
					 | 
			
| [109] | 
					 WANG Zuojia, JING Liqiao, YAO Kan, et al. Origami-based reconfigurable metamaterials for tunable chirality[J]. Advanced Materials, 2017, 29(27): 1700412. doi:  10.1002/adma.201700412. 
						
					 | 
			
| [110] | 
					 Zhu Zhibiao, WANG He, LI Yongfeng, et al. Origami-based metamaterials for dynamic control of wide-angle absorption in a reconfigurable manner[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4558–4568. doi:  10.1109/TAP.2022.3140521. 
						
					 | 
			
| [111] | 
					 ZHENG Yilin, CHEN Ke, YANG Weixu, et al. Kirigami reconfigurable gradient metasurface[J]. Advanced Functional Materials, 2022, 32(5): 2107699. doi:  10.1002/adfm.202107699. 
						
					 | 
			
| [112] | 
					 ZHENG Yilin, WANG Shaojie, DUAN Kun, et al. Chirality-switching and reconfigurable spin-selective wavefront by origami deformation metasurface[J]. Laser & Photonics Reviews, 2024, 18(1): 2300720. doi:  10.1002/lpor.202300720. 
						
					 | 
			
| [113] | 
					 LE D H and LIM S. Four-mode programmable metamaterial using ternary foldable origami[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28554–28561. doi:  10.1021/acsami.9b09301. 
						
					 | 
			
| [114] | 
					 YANG Yunfang, VALLECCHI A, SHAMONINA E, et al. A new class of transformable kirigami metamaterials for reconfigurable electromagnetic systems[J]. Scientific Reports, 2023, 13(1): 1219. doi:  10.1038/s41598-022-27291-8. 
						
					 | 
			
| [115] | 
					 CHEN Xiqiao, LI Wei, WU Zhuang, et al. Origami-based microwave absorber with a reconfigurable bandwidth[J]. Optics Letters, 2021, 46(6): 1349–1352. doi:  10.1364/OL.419093. 
						
					 | 
			
| [116] | 
					 ZHU Zhibiao, LI Yongfeng, QIN Zhe, et al. Miura origami based reconfigurable polarization converter for multifunctional control of electromagnetic waves[J]. Photonics Research, 2024, 12(3): 581–586. doi:  10.1364/PRJ.504027. 
						
					 | 
			
| [117] | 
					 WANG Zhongbao, CHEN Qiang, MA Yanli, et al. Design of thermal-switchable absorbing metasurface based on vanadium dioxide[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(12): 2302–2306. doi:  10.1109/LAWP.2022.3186802. 
						
					 | 
			
| [118] | 
					 LIU Jianjun and FAN Lanlan. Development of a tunable terahertz absorber based on temperature control[J]. Microwave and Optical Technology Letters, 2020, 62(4): 1681–1685. doi:  10.1002/mop.32211. 
						
					 | 
			
| [119] | 
					 LIU Xingbo, WANG Qiu, ZHANG Xueqian, et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated metasurface[J]. Advanced Optical Materials, 2019, 7(12): 1900175. doi:  10.1002/adom.201900175. 
						
					 | 
			
| [120] | 
					 LU Xueguang, DONG Bowen, ZHU Hongfu, et al. Two-channel VO2 memory meta-device for terahertz waves[J]. Nanomaterials, 2021, 11(12): 3409. doi:  10.3390/nano11123409. 
						
					 | 
			
| [121] | 
					 LI Zenglin, WANG Wei, DENG Shaoxuan, et al. Active beam manipulation and convolution operation in VO2-integrated coding terahertz metasurfaces[J]. Optics Letters, 2022, 47(2): 441–444. doi:  10.1364/OL.447377. 
						
					 | 
			
| [122] | 
					 GUO Linyang, MA Xiaohui, CHANG Zhaoqing, et al. Tunable a temperature-dependent GST-based metamaterial absorber for switching and sensing applications[J]. Journal of Materials Research and Technology, 2021, 14: 772–779. doi:  10.1016/j.jmrt.2021.06.080. 
						
					 | 
			
| [123] | 
					 CHEN Jiajia, CHEN Xieyu, LIU Kuan, et al. A thermally switchable bifunctional metasurface for broadband polarization conversion and absorption based on phase-change material[J]. Advanced Photonics Research, 2022, 3(9): 2100369. doi:  10.1002/adpr.202100369. 
						
					 | 
			
| [124] | 
					 SONG Yipeng and XU Peipeng. Design of ultra-low insertion loss active transverse electric-pass polarizer based Ge2Sb2Te5 on silicon waveguide[J]. Optics Communications, 2018, 426: 30–34. doi:  10.1016/j.optcom.2018.05.034. 
						
					 | 
			
| [125] | 
					 ZHANG Shijie, WANG Qi, ZENG Ruimei, et al. Thermal tuning nanoprinting based on liquid crystal tunable dual-layered metasurfaces for optical information encryption[J]. Optics Express, 2024, 32(3): 4639–4649. doi:  10.1364/OE.514603. 
						
					 | 
			
| [126] | 
					 SAUTTER J, STAUDE I, DECKER M, et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano, 2015, 9(4): 4308–4315. doi:  10.1021/acsnano.5b00723. 
						
					 | 
			
| [127] | 
					 SHARMA M and ELLENBOGEN T. An all-optically controlled liquid-crystal plasmonic metasurface platform[J]. Laser & Photonics Reviews, 2020, 14(11): 2000253. doi:  10.1002/lpor.202000253. 
						
					 | 
			
| [128] | 
					 RAHMANI M, XU Lei, MIROSHNICHENKO A E, et al. Reversible thermal tuning of all-dielectric metasurfaces[J]. Advanced Functional Materials, 2017, 27(31): 1700580. doi:  10.1002/adfm.201700580. 
						
					 | 
			
| [129] | 
					 YANG Daquan, ZHANG Chao, LI Xiaogang, et al. InSb-enhanced thermally tunable terahertz silicon metasurfaces[J]. IEEE Access, 2019, 7: 95087–95093. doi:  10.1109/ACCESS.2019.2928225. 
						
					 | 
			
| [130] | 
					 IYER P P, PENDHARKAR M, PALMSTRØM C J, et al. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates[J]. Nature Communications, 2017, 8(1): 472. doi:  10.1038/s41467-017-00615-3. 
						
					 | 
			
| [131] | 
					 SHIRMANESH G K, SOKHOYAN R, WU P C, et al. Electro-optically tunable multifunctional metasurfaces[J]. ACS Nano, 2020, 14(6): 6912–6920. doi:  10.1021/acsnano.0c01269. 
						
					 | 
			
| [132] | 
					 LI Jianxiong, YU Ping, ZHANG Shuang, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nature Communications, 2020, 11(1): 3574. doi:  10.1038/s41467-020-17390-3. 
						
					 | 
			
| [133] | 
					 LI Yue, LIN Jing, GUO Huijie, et al. A tunable metasurface with switchable functionalities: From perfect transparency to perfect absorption[J]. Advanced Optical Materials, 2020, 8(6): 1901548. doi:  10.1002/adom.201901548. 
						
					 | 
			
| [134] | 
					 LIU Guangyao, LI Long, HAN Jiaqi, et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23554–23564. doi:  10.1021/acsami.0c02467. 
						
					 | 
			
| [135] | 
					 KE Junchen, DAI Junyan, ZHANG Junwei, et al. Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases[J]. Light: Science & Applications, 2022, 11(1): 273. doi:  10.1038/s41377-022-00973-8. 
						
					 | 
			
| [136] | 
					 SONG Xinyun, YANG Weixu, QU Kai, et al. Switchable metasurface for nearly perfect reflection, transmission, and absorption using PIN diodes[J]. Optics Express, 2021, 29(18): 29320–29328. doi:  10.1364/OE.436261. 
						
					 | 
			
| [137] | 
					 LIAO Jianming, GUO Shaojun, YUAN Liming, et al. Independent manipulation of reflection amplitude and phase by a single-layer reconfigurable metasurface[J]. Advanced Optical Materials, 2022, 10(4): 2101551. doi:  10.1002/adom.202101551. 
						
					 | 
			
| [138] | 
					 HUANG Cheng, ZHANG Changlei, YANG Jianning, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485. doi:  10.1002/adom.201700485. 
						
					 | 
			
| [139] | 
					 JEONG H, LE D H, LIM D, et al. Reconfigurable metasurfaces for frequency selective absorption[J]. Advanced Optical Materials, 2020, 8(13): 1902182. doi:  10.1002/adom.201902182. 
						
					 | 
			
| [140] | 
					 PHON R, LEE M, LOR C, et al. Multifunctional reflective metasurface to independently and simultaneously control amplitude and phase with frequency tunability[J]. Advanced Optical Materials, 2023, 11(14): 2202943. doi:  10.1002/adom.202202943. 
						
					 | 
			
| [141] | 
					 ZHANG Xinge, YU Qian, JIANG Weixiang, et al. Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382. doi:  10.1002/advs.201903382. 
						
					 | 
			
| [142] | 
					 GHOSH S and SRIVASTAVA K V. Polarization-insensitive single-/dual-band tunable absorber with independent tuning in wide frequency range[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4903–4908. doi:  10.1109/TAP.2017.2731381. 
						
					 | 
			
| [143] | 
					 ZHU Ruichao, WANG Jiafu, DING Chang, et al. Multi-field-sensing metasurface with robust self-adaptive reconfigurability[J]. Nanophotonics, 2023, 12(7): 1337–1345. doi:  10.1515/nanoph-2023-0050. 
						
					 | 
			
| [144] | 
					 ZHANG Jin, WEI Xingzhan, RUKHLENKO I D, et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics, 2020, 7(1): 265–271. doi:  10.1021/acsphotonics.9b01532. 
						
					 | 
			
| [145] | 
					 KIM Y, WU P C, SOKHOYAN R, et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces[J]. Nano Letters, 2019, 19(6): 3961–3968. doi:  10.1021/acs.nanolett.9b01246. 
						
					 | 
			
| [146] | 
					 PARK D J, SHIN J H, PARK K H, et al. Electrically controllable THz asymmetric split-loop resonator with an outer square loop based on VO2[J]. Optics Express, 2018, 26(13): 17397–17406. doi:  10.1364/OE.26.017397. 
						
					 | 
			
| [147] | 
					 FOROUZMAND A, SALARY M M, SHIRMANESH G K, et al. Tunable all-dielectric metasurface for phase modulation of the reflected and transmitted light via permittivity tuning of indium tin oxide[J]. Nanophotonics, 2019, 8(3): 415–427. doi:  10.1515/nanoph-2018-0176. 
						
					 | 
			
| [148] | 
					 ZHANG Jinqiannan, YANG Jingyi, SCHELL M, et al. Gate-tunable optical filter based on conducting oxide metasurface heterostructure[J]. Optics Letters, 2019, 44(15): 3653–3656. doi:  10.1364/OL.44.003653. 
						
					 | 
			
| [149] | 
					 LUO Wei, ABBASI S A, ZHU Shaodi, et al. Electrically switchable and tunable infrared light modulator based on functional graphene metasurface[J]. Nanophotonics, 2023, 12(9): 1797–1807. doi:  10.1515/nanoph-2023-0048. 
						
					 | 
			
| [150] | 
					 YAO Wei, TANG Linlong, NONG Jinpeng, et al. Electrically tunable graphene metamaterial with strong broadband absorption[J]. Nanotechnology, 2021, 32(7): 075703. doi:  10.1088/1361-6528/abc44f. 
						
					 | 
			
| [151] | 
					 CAI Ziqiang and LIU Yongmin. Near-infrared reflection modulation through electrical tuning of hybrid graphene metasurfaces[J]. Advanced Optical Materials, 2022, 10(6): 2102135. doi:  10.1002/adom.202102135. 
						
					 | 
			
| [152] | 
					 XU Zhixiang, NI Cheng, CHENG Yongzhi, et al. Photo-excited metasurface for tunable terahertz reflective circular polarization conversion and anomalous beam deflection at two frequencies independently[J]. Nanomaterials, 2023, 13(12): 1846. doi:  10.3390/nano13121846. 
						
					 | 
			
| [153] | 
					 ZHOU Qiangguo, LI Yongzhen, WU Tuntan, et al. Terahertz metasurface modulators based on photosensitive silicon[J]. Laser & Photonics Reviews, 2023, 17(6): 2200808. doi:  10.1002/lpor.202200808. 
						
					 | 
			
| [154] | 
					 ULLAH A, WANG Y C, YEASMIN S, et al. Reconfigurable photoinduced terahertz wave modulation using hybrid metal-silicon metasurface[J]. Optics Letters, 2022, 47(11): 2750–2753. doi:  10.1364/OL.457573. 
						
					 | 
			
| [155] | 
					 KIM J, CARNEMOLLA E G, DEVAULT C, et al. Dynamic control of nanocavities with tunable metal oxides[J]. Nano Letters, 2018, 18(2): 740–746. doi:  10.1021/acs.nanolett.7b03919. 
						
					 | 
			
| [156] | 
					 SAHA S, DUTTA A, DEVAULT C, et al. Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics[J]. Materials Today, 2021, 43: 27–36. doi:  10.1016/j.mattod.2020.10.023. 
						
					 | 
			
| [157] | 
					 WU Yuhao, CHOWDHURY S N, KANG Lei, et al. Zinc oxide (ZnO) hybrid metasurfaces exhibiting broadly tunable topological properties[J]. Nanophotonics, 2022, 11(17): 3933–3942. doi:  10.1515/nanoph-2022-0115. 
						
					 | 
			
| [158] | 
					 YANG Yuanmu, KELLEY K, SACHET E, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber[J]. Nature Photonics, 2017, 11(6): 390–395. doi:  10.1038/nphoton.2017.64. 
						
					 | 
			
| [159] | 
					 ZHANG Xinge, JIANG Weixiang, and CUI Tiejun. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity[J]. Applied Physics Letters, 2018, 113(9): 091601. doi:  10.1063/1.5045718. 
						
					 | 
			
| [160] | 
					 ZHANG Xinge, JIANG Weixiang, JIANG Haolin, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165–171. doi:  10.1038/s41928-020-0380-5. 
						
					 | 
			
| [161] | 
					 ZHANG Xinge, SUN Yalun, ZHU Bingcheng, et al. Light-controllable time-domain digital coding metasurfaces[J]. Advanced Photonics, 2022, 4(2): 025001. doi:  10.1117/1.AP.4.2.025001. 
						
					 | 
			
| [162] | 
					 CHEN Lei, NIE Qianfan, RUAN Ying, et al. Light-controllable metasurface for microwave wavefront manipulation[J]. Optics Express, 2020, 28(13): 18742–18749. doi:  10.1364/OE.396802. 
						
					 | 
			
| [163] | 
					 CHEN Lei, YE Fuju, CUO Mu, et al. Ultraviolet-sensing metasurface for programmable electromagnetic scattering field manipulation by combining light control with a microwave field[J]. Optics Express, 2022, 30(11): 19212–19221. doi:  10.1364/OE.454111. 
						
					 | 
			
| [164] | 
					 LI Ruijie, LIU Haixia, XU Peng, et al. Light-controlled metasurface with a controllable range of reflection phase modulation[J]. Journal of Physics D: Applied Physics, 2022, 55(22): 225302. doi:  10.1088/1361-6463/ac5555. 
						
					 | 
			
| [165] | 
					 MIAO Siyu and LIN Fenghan. Light-controlled large-scale wirelessly reconfigurable microstrip reflectarrays[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1613–1622. doi:  10.1109/TAP.2022.3230551. 
						
					 | 
			
| [166] | 
					 HU Yuze, HAO Hao, ZHANG Jun, et al. Anisotropic temporal metasurfaces for tunable ultrafast photoactive switching dynamics[J]. Laser & Photonics Reviews, 2021, 15(10): 2100244. doi:  10.1002/lpor.202100244. 
						
					 | 
			
| [167] | 
					 JUNG I, JANG H J, HAN S, et al. Magnetic modulation of surface plasmon resonance by tailoring magnetically responsive metallic block in multisegment nanorods[J]. Chemistry of Materials, 2015, 27(24): 8433–8441. doi:  10.1021/acs.chemmater.5b04016. 
						
					 | 
			
| [168] | 
					 ARMELLES G, BERGAMINI L, ZABALA N, et al. Metamaterial platforms for spintronic modulation of mid-infrared response under very weak magnetic field[J]. ACS Photonics, 2018, 5(10): 3956–3961. doi:  10.1021/acsphotonics.8b00866. 
						
					 | 
			
| [169] | 
					 BI Yu, HUANG Lingling, LI Tuo, et al. Active metasurface via magnetic control for tri-channel polarization multiplexing holography[J]. Chinese Optics Letters, 2024, 22(4): 043601. doi:  10.3788/COL202422.043601. 
						
					 | 
			
| [170] | 
					 JU Cheng, WU Ruixin, LI Zhen, et al. Manipulating electromagnetic wave propagating non-reciprocally by a chain of ferriterods[J]. Optics Express, 2017, 25(18): 22096–22103. doi:  10.1364/OE.25.022096. 
						
					 | 
			
| [171] | 
					 GUO Yunsheng, HOU Xiaojuan, LV Xiaolong, et al. Tunable artificial microwave blackbodies based on metasurfaces[J]. Optics Express, 2017, 25(21): 25879–25885. doi:  10.1364/OE.25.025879. 
						
					 | 
			
| [172] | 
					 ZHANG Yihan, WU Gaojian, and HUANG Chengping. Magnetic tuning of metasurfaces using ultrathin flexible metals bonded with ferrite patches[J]. Journal of Lightwave Technology, 2024, 42(9): 3277–3282. doi:  10.1109/JLT.2024.3351887. 
						
					 | 
			
| [173] | 
					 LIU Peng, CHEN Xing, XU Wangdong, et al. Magnetically controlled multifunctional membrane acoustic metasurface[J]. Journal of Applied Physics, 2020, 127(18): 185104. doi:  10.1063/1.5145289. 
						
					 | 
			
| [174] | 
					 GUO Jinying, WANG Teng, ZHAO Huan, et al. Reconfigurable terahertz metasurface pure phase holograms[J]. Advanced Optical Materials, 2019, 7(10): 1801696. doi:  10.1002/adom.201801696. 
						
					 | 
			
| [175] | 
					 DU Zhiqiang, HE Canhui, XIN Jinhao, et al. Terahertz dynamic multichannel holograms generated by spin-multiplexing reflective metasurface[J]. Optics Express, 2024, 32(1): 248–259. doi:  10.1364/OE.510046. 
						
					 | 
			
| [176] | 
					 LI Tianyou, WEI Qunshuo, REINEKE B, et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels[J]. Optics Express, 2019, 27(15): 21153–21162. doi:  10.1364/OE.27.021153. 
						
					 | 
			
| [177] | 
					 LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi:  10.1038/s41467-017-00164-9. 
						
					 | 
			
| [178] | 
					 FENG Rui, RATNI B, YI Jianjia, et al. Reprogrammable digital holograms and multibit spatial energy modulation using a reflective metasurface[J]. ACS Applied Electronic Materials, 2021, 3(12): 5272–5277. doi:  10.1021/acsaelm.1c00786. 
						
					 | 
			
| [179] | 
					 HU Yuan, CHEN Shaonan, SHI Yan, et al. Space-time coding metasurface for multifunctional holographic imaging[J]. Advanced Materials Technologies, 2024, 9(12): 2302164. doi:  10.1002/admt.202302164. 
						
					 | 
			
| [180] | 
					 ZHANG M, ZHANG W, LIU A Q, et al. Tunable polarization conversion and rotation based on a reconfigurable metasurface[J]. Scientific Reports, 2017, 7(1): 12068. doi:  10.1038/s41598-017-11953-z. 
						
					 | 
			
| [181] | 
					 YU Ping, LI Jianxiong, and LIU Na. Electrically tunable optical metasurfaces for dynamic polarization conversion[J]. Nano Letters, 2021, 21(15): 6690–6695. doi:  10.1021/acs.nanolett.1c02318. 
						
					 | 
			
| [182] | 
					 FENG Jinlong, CHEN Xiepeng, WU Linsheng, et al. Broadband electrically tunable linear polarization converter based on a graphene metasurface[J]. Optics Express, 2023, 31(2): 1420–1431. doi:  10.1364/OE.477907. 
						
					 | 
			
| [183] | 
					 HOU Yanzhao, ZHANG Chao, and WANG Chengrui. High-efficiency and tunable terahertz linear-to-circular polarization converters based on all-dielectric metasurfaces[J]. IEEE Access, 2020, 8: 140303–140309. doi:  10.1109/ACCESS.2020.3007838. 
						
					 | 
			
| [184] | 
					 YU Fuyuan, ZHU Jiabing, and SHEN Xiaobo. Tunable and reflective polarization converter based on single-layer vanadium dioxide-integrated metasurface in terahertz region[J]. Optical Materials, 2022, 123: 111745. doi:  10.1016/j.optmat.2021.111745. 
						
					 | 
			
| [185] | 
					 GAO Xi, YANG Wanli, MA Huifeng, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6086–6095. doi:  10.1109/TAP.2018.2866636. 
						
					 | 
			
| [186] | 
					 YANG Zhengyi, KOU Na, YU Shixing, et al. Reconfigurable multifunction polarization converter integrated with PIN diode[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6): 557–560. doi:  10.1109/LMWC.2021.3064039. 
						
					 | 
			
| [187] | 
					 AFRIDI A, GIESELER J, MEYER N, et al. Ultrathin tunable optomechanical metalens[J]. Nano Letters, 2023, 23(7): 2496–2501. doi:  10.1021/acs.nanolett.2c04105. 
						
					 | 
			
| [188] | 
					 SHALAGINOV M Y, AN Sensong, ZHANG Yifei, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications, 2021, 12(1): 1225. doi:  10.1038/s41467-021-21440-9. 
						
					 | 
			
| [189] | 
					 ZHANG Zhaokun, QI Xiangqian, ZHANG Jianfa, et al. Graphene-enabled electrically tunability of metalens in the terahertz range[J]. Optics Express, 2020, 28(19): 28101–28112. doi:  10.1364/OE.401627. 
						
					 | 
			
| [190] | 
					 LIU Weiguang, HU Bin, HUANG Zongduo, et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Research, 2018, 6(7): 703–708. doi:  10.1364/PRJ.6.000703. 
						
					 | 
			
| [191] | 
					 ZHANG Yongai, LIN Chaofu, LIN Jianpu, et al. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane[J]. Optics Communications, 2018, 412: 114–120. doi:  10.1016/j.optcom.2017.12.008. 
						
					 | 
			
| [192] | 
					 BADLOE T, KIM I, KIM Y, et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths[J]. Advanced Science, 2021, 8(21): 2102646. doi:  10.1002/advs.202102646. 
						
					 | 
			
| [193] | 
					 KOMAR A, PANIAGUA-DOMÍNGUEZ P, MIROSHNICHENKO A, et al. Dynamic beam switching by liquid crystal tunable Dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742–1748. doi:  10.1021/acsphotonics.7b01343. 
						
					 | 
			
| [194] | 
					 KIM S I, PARK J, JEONG B G, et al. Two-dimensional beam steering with tunable metasurface in infrared regime[J]. Nanophotonics, 2022, 11(11): 2719–2726. doi:  10.1515/nanoph-2021-0664. 
						
					 | 
			
| [195] | 
					 HUANG Yaowei, LEE H W H, SOKHOYAN R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9): 5319–5325. doi:  10.1021/acs.nanolett.6b00555. 
						
					 | 
			
| [196] | 
					 WU P C, PALA R A, SHIRMANESH G K, et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces[J]. Nature Communications, 2019, 10(1): 3654. doi:  10.1038/s41467-019-11598-8. 
						
					 | 
			
| [197] | 
					 HASHEMI M R M, YANG Shanghua, WANG Tongyu, et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces[J]. Scientific Reports, 2016, 6(1): 35439. doi:  10.1038/srep35439. 
						
					 | 
			
| [198] | 
					 ZHUANG Xiaolin, ZHANG Wei, WANG Kemeng, et al. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface[J]. Light: Science & Applications, 2023, 12(1): 14. doi:  10.1038/s41377-022-01046-6. 
						
					 | 
			
| [199] | 
					 ZHANG Kuang, YUAN Yueyi, ZHANG Dawei, et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region[J]. Optics Express, 2018, 26(2): 1351–1360. doi:  10.1364/OE.26.001351. 
						
					 | 
			
| [200] | 
					 LI Sijia, LI Zhouyue, LIU Xiaobin, et al. Transmissive digital coding metasurfaces for polarization-dependent dual-mode quad orbital angular momentum beams[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23690–23700. doi:  10.1021/acsami.3c04082. 
						
					 | 
			
| [201] | 
					 TANG Pengcheng, SI Liming, YUAN Qianqian, et al. Dynamic generation of multiplexed vortex beams by a space-time-coding metasurface[J]. Photonics Research, 2025, 13(1): 225–234. doi:  10.1364/PRJ.543744. 
						
					 | 
			
| [202] | 
					 MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8(1): 98. doi:  10.1038/s41377-019-0205-3. 
						
					 | 
			
| [203] | 
					 WANG Haipeng, LI Yunbo, LI He, et al. Intelligent metasurface with frequency recognition for adaptive manipulation of electromagnetic wave[J]. Nanophotonics, 2022, 11(7): 1401–1411. doi:  10.1515/nanoph-2021-0799. 
						
					 | 
			
| [204] | 
					 JIANG Ruizhe, MA Qian, GU Ze, et al. Simultaneously intelligent sensing and beamforming based on an adaptive information metasurface[J]. Advanced Science, 2024, 11(7): 2306181. doi:  10.1002/advs.202306181. 
						
					 | 
			
| [205] | 
					 GAO Chengjing, LAI Tingjun, PENG Liang, et al. Multifunctional intelligent reconfigurable metasurface[J]. ACS Applied Materials & Interfaces, 2024, 16(41): 55675–55683. doi:  10.1021/acsami.4c09944. 
						
					 | 
			
| [206] | 
					 SHE Ying, JI Chen, HUANG Cheng, et al. Intelligent reconfigurable metasurface for self-adaptively electromagnetic functionality switching[J]. Photonics Research, 2022, 10(3): 769–776. doi:  10.1364/PRJ.450297. 
						
					 | 
			
| [207] | 
					 QIAN Chao, ZHENG Bin, SHEN Yichen, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020, 14(6): 383–390. doi:  10.1038/s41566-020-0604-2. 
						
					 | 
			
| [208] | 
					 LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light: Science & Applications, 2019, 8(1): 97. doi:  10.1038/s41377-019-0209-z. 
						
					 |