Citation: | ZHOU Hongcheng, YU Xiaoran, WANG Yu, et al. Research progress of electrically controlled reconfigurable polarization manipulation using metasurface[J]. Journal of Radars, 2024, 13(3): 696–713. doi: 10.12000/JR23230 |
[1] |
BORN M and WOLF E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 6th ed. New York: Pergamon Press, 1980: 36–67.
|
[2] |
WAKAKI M, KOMACHI Y, MACHIDA H, et al. Fiber-optic polarizer using birefringent crystal as a cladding[J]. Applied Optics, 1996, 35(15): 2591–2594. doi: 10.1364/AO.35.002591.
|
[3] |
魏克珠, 潘健, 刘博, 等. 微波铁氧体器件与变极化应用[M]. 北京: 国防工业出版社, 2017: 113–120.
WEI Kezhu, PAN Jian, LIU Bo, et al. Microwave Ferrite Device and Variable Polarization Application[M]. Beijing: National Defense Industry Press, 2017: 113–120.
|
[4] |
SMITH D R, PENDRY J B, and WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788–792. doi: 10.1126/science.1096796.
|
[5] |
SMITH D R and KROLL N. Negative refractive index in left-handed materials[J]. Physical Review Letters, 2000, 85(14): 2933–2936. doi: 10.1103/PhysRevLett.85.2933.
|
[6] |
PENDRY J B. A chiral route to negative refraction[J]. Science, 2004, 306(5700): 1353–1355. doi: 10.1126/science.1104467.
|
[7] |
LAROUCHE S, TSAI Y J, TYLER T, et al. Infrared metamaterial phase holograms[J]. Nature Materials, 2012, 11(5): 450–454. doi: 10.1038/nmat3278.
|
[8] |
ZHENG Guoxing, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308–312. doi: 10.1038/nnano.2015.2.
|
[9] |
JOHN-HERPIN A, TITTL A, KÜHNER L, et al. Metasurface-enhanced infrared spectroscopy: An abundance of materials and functionalities[J]. Advanced Materials, 2023, 35(34): 2110163. doi: 10.1002/adma.202110163.
|
[10] |
LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9.
|
[11] |
ALAEE R, ALBOOYEH M, and ROCKSTUHL C. Theory of metasurface based perfect absorbers[J]. Journal of Physics D: Applied Physics, 2017, 50(50): 503002. doi: 10.1088/1361-6463/aa94a8.
|
[12] |
WEN Dandan, YUE Fuyong, KUMAR S, et al. Metasurface for characterization of the polarization state of light[J]. Optics Express, 2015, 23(8): 10272–10281. doi: 10.1364/OE.23.010272.
|
[13] |
LIN Dianmin, FAN Pengyu, HASMAN E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298–302. doi: 10.1126/science.1253213.
|
[14] |
LIU Xiaoming, ZHOU Yixin, WANG Chen, et al. Dual-band dual-rotational-direction angular stable linear-to-circular polarization converter[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 6054–6059. doi: 10.1109/tap.2021.3138533.
|
[15] |
MAJEED A, ZHANG Jinling, ASHRAF M A, et al. An ultra-wideband linear-to-circular polarization converter based on a circular, pie-shaped reflective metasurface[J]. Electronics, 2022, 11(11): 1681. doi: 10.3390/electronics11111681.
|
[16] |
VU T L and SEO C. A high angular stability, single-layer transmission linear-to-circular polarization converter for dual ISM-band operation[J]. IEEE Access, 2023, 11: 30188–30196. doi: 10.1109/access.2023.3261563.
|
[17] |
DICANDIA F A and GENOVESI S. Linear-to-circular polarization transmission converter exploiting meandered metallic slots[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(11): 2191–2195. doi: 10.1109/lawp.2022.3188063.
|
[18] |
YANG Pei, DANG Ruirong, and LI Lipin. Dual-linear-to-circular polarization converter based polarization-twisting metasurface antenna for generating dual band dual circularly polarized radiation in Ku-band[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(10): 9877–9881. doi: 10.1109/TAP.2022.3178803.
|
[19] |
WANG Hongbin and CHENG Yujian. Single-layer dual-band linear-to-circular polarization converter with wide axial ratio bandwidth and different polarization modes[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(6): 4296–4301. doi: 10.1109/tap.2019.2905962.
|
[20] |
SOFI M A, SAURAV K, and KOUL S K. Linear-to-circular polarization converter with wide angular stability and near unity ellipticity—application to linearly polarized antenna array[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(12): 4779–4783. doi: 10.1109/tcsii.2022.3196385.
|
[21] |
XU Peng, JIANG Weixiang, WANG Shenyun, et al. An ultrathin cross-polarization converter with near unity efficiency for transmitted waves[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8): 4370–4373. doi: 10.1109/TAP.2018.2839972.
|
[22] |
LIU Chuan, GAO Renjing, WANG Qi, et al. A design of ultra-wideband linear cross-polarization conversion metasurface with high efficiency and ultra-thin thickness[J]. Journal of Applied Physics, 2020, 127(15): 153103. doi: 10.1063/1.5143831.
|
[23] |
DEY S, DEY S, and KOUL S K. Miniaturized dual stop band frequency selective surface with broadband linear co to cross polarization conversion ability[J]. International Journal of RF and Microwave Computer‐Aided Engineering, 2021, 31(9): e22779. doi: 10.1002/mmce.22779.
|
[24] |
SONG Kun, LIU Yahong, LUO Chunrong, et al. High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial[J]. Journal of Physics D: Applied Physics, 2014, 47(50): 505104. doi: 10.1088/0022-3727/47/50/505104.
|
[25] |
LIU Chuan, GAO Renjing, LIU Shutian, et al. Meander-line based high-efficiency ultrawideband linear cross-polarization conversion metasurface[J]. Applied Physics Express, 2021, 14(7): 074001. doi: 10.35848/1882-0786/ac0b06.
|
[26] |
BAGHEL A K, KULKARNI S S, and NAYAK S K. Linear-to-cross-polarization transmission converter using ultrathin and smaller periodicity metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1433–1437. doi: 10.1109/lawp.2019.2919423.
|
[27] |
FEI Peng, VANDENBOSCH G A E, GUO Weihua, et al. Versatile cross-polarization conversion chiral metasurface for linear and circular polarizations[J]. Advanced Optical Materials, 2020, 8(13): 2000194. doi: 10.1002/adom.202000194.
|
[28] |
LIN Baoqin, GUO Jianxin, LV Lintao, et al. Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves[J]. Applied Physics A, 2019, 125(2): 76. doi: 10.1007/S00339-018-2368-9.
|
[29] |
PENG Lin, LI Xiaofeng, JIANG Xing, et al. A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating by Graphene[J]. Journal of Lightwave Technology, 2018, 36(19): 4250–4258. doi: 10.1109/JLT.2018.2836904.
|
[30] |
LIN Baoqin, HUANG Wenzhun, GUO Jianxin, et al. A high efficiency ultra-wideband circular-to-linear polarization conversion metasurface[J]. Optics Communications, 2023, 529: 129102. doi: 10.1016/j.optcom.2022.129102.
|
[31] |
SUN Xiaoning, QU Zhaoming, YUAN Jianghang, et al. Reconfigurable broadband polarisation conversion metasurface based on VO2[J]. Photonics and Nanostructures-Fundamentals and Applications, 2022, 50: 101012. doi: 10.1016/j.photonics.2022.101012.
|
[32] |
ZHU H L, CHEUNG S W, LIU X H, et al. Design of polarization reconfigurable antenna using metasurface[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(6): 2891–2898. doi: 10.1109/tap.2014.2310209.
|
[33] |
LI Long, LI Yongjiu, WU Zhao, et al. Novel polarization-reconfigurable converter based on multilayer frequency-selective surfaces[J]. Proceedings of the IEEE, 2015, 103(7): 1057–1070. doi: 10.1109/jproc.2015.2437611.
|
[34] |
CERVENY M, FORD K L, and TENNANT A. Reflective switchable polarization rotator based on metasurface with PIN diodes[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1483–1492. doi: 10.1109/tap.2020.3026883.
|
[35] |
DE LUSTRAC A, RATNI B, PIAU G P, et al. Tri-state metasurface-based electromagnetic screen with switchable reflection, transmission, and absorption functionalities[J]. ACS Applied Electronic Materials, 2021, 3(3): 1184–1190. doi: 10.1021/acsaelm.0c01038.
|
[36] |
XU Shitong, FAN Fei, CAO Hongzhong, et al. Liquid crystal integrated metamaterial for multi-band terahertz linear polarization conversion[J]. Chinese Optics Letters, 2021, 19(9): 093701. doi: 10.3788/COL202119.093701.
|
[37] |
VASIĆ B, ZOGRAFOPOULOS D C, ISIĆ G, et al. Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals[J]. Nanotechnology, 2017, 28(12): 124002. doi: 10.1088/1361-6528/aa5bbd.
|
[38] |
MA Xiaoliang, PAN Wenbo, HUANG Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945–949. doi: 10.1002/adom.201400212.
|
[39] |
LI Wenting, GAO S, CAI Yuanming, et al. Polarization-reconfigurable circularly polarized planar antenna using switchable polarizer[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4470–4477. doi: 10.1109/tap.2017.2730240.
|
[40] |
LI Wei, XIA Song, HE Bin, et al. A reconfigurable polarization converter using active metasurface and its application in horn antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5281–5290. doi: 10.1109/tap.2016.2620484.
|
[41] |
SOFI M A, SAURAV K, and KOUL S K. A linear to circular polarization reconfigurable converter based on frequency selective surface[J]. Microwave and Optical Technology Letters, 2021, 63(5): 1425–1433. doi: 10.1002/mop.32779.
|
[42] |
ZHU Shuangshuang, WANG Ping, ZHANG Yong, et al. A reconfigurable polarization converter and related application as horn antenna cladding[J]. Journal of Applied Physics, 2023, 133(2): 023102. doi: 10.1063/5.0130212.
|
[43] |
ZHOU Hongcheng, YU Xiaoran, WANG Ping, et al. Wideband linear-to-multi-polarization converter based on active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(6): 5246–5255. doi: 10.1109/tap.2023.3256581.
|
[44] |
HUANG Chenxi, ZHANG Jingjing, CHENG Qiang, et al. Polarization modulation for wireless communications based on metasurfaces[J]. Advanced Functional Materials, 2021, 31(36): 2103379. doi: 10.1002/adfm.202103379.
|
[45] |
WU Zhanni, RA’DI Y, and GRBIC A. Tunable metasurfaces: A polarization rotator design[J]. Physical Review X, 2019, 9(1): 011036. doi: 10.1103/PhysRevX.9.011036.
|
[46] |
LI You, CAO Qunsheng, and WANG Yi. A wideband multifunctional multilayer switchable linear polarization metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(7): 1314–1318. doi: 10.1109/lawp.2018.2843816.
|
[47] |
WEI Zeyong, ZHAO Yunlong, ZHANG Yujing, et al. High-efficiency modulation of broadband polarization conversion with a reconfigurable chiral metasurface[J]. Nanoscale Advances, 2022, 4(20): 4344–4350. doi: 10.1039/d2na00382a.
|
[48] |
WANG Ping, LIN Feihong, WANG Yu, et al. Tunable polarization converter with high polarization isolation based on metasurface and its application on horn antenna[J]. Applied Physics A, 2022, 128(10): 863. doi: 10.1007/s00339-022-05930-1.
|
[49] |
WANG Ping, WANG Yu, YAN Zhongming, et al. Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions[J]. Chinese Physics B, 2022, 31(12): 124201. doi: 10.1088/1674-1056/ac8ce0.
|
[50] |
WANG Ping, QIN Yifei, WANG Yu, et al. Wideband switchable linear polarization rotator based on metasurface[J]. Applied Physics Letters, 2023, 123(1): 011701. doi: 10.1063/5.0155015.
|
[51] |
SAIKIA M, GHOSH S, and SRIVASTAVA K V. Switchable reflective metamaterial polarisation rotator[J]. Electronics Letters, 2016, 52(12): 1030–1032. doi: 10.1049/el.2016.0742.
|
[52] |
WANG Fuwei, LI Ke, and REN Yuhui. Reconfigurable polarization rotation surfaces applied to the wideband antenna radar cross section reduction[J]. International Journal of RF and Microwave Computer‐Aided Engineering, 2018, 28(5): e21262. doi: 10.1002/mmce.21262.
|
[53] |
SUN Shangyi, JIANG Wen, GONG Shuxi, et al. Reconfigurable linear-to-linear polarization conversion metasurface based on PIN diodes[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(9): 1722–1726. doi: 10.1109/LAWP.2018.2864797.
|
[54] |
TIAN Jianghao, CAO Xiangyu, GAO Jun, et al. A reconfigurable ultra-wideband polarization converter based on metasurface incorporated with PIN diodes[J]. Journal of Applied Physics, 2019, 125(13): 135105. doi: 10.1063/1.5067383.
|
[55] |
YANG Heng, WANG Shicong, LI Peng, et al. A broadband multifunctional reconfigurable polarization conversion metasurface[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5759–5767. doi: 10.1109/TAP.2023.3266498.
|
[56] |
YANG Zhengyi, KOU Na, YU Shixing, et al. Reconfigurable multifunction polarization converter integrated with PIN diode[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6): 557–560. doi: 10.1109/LMWC.2021.3064039.
|
[57] |
LIU Wei, KE Junchen, XIAO Cong, et al. Broadband polarization-reconfigurable converter using active metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(4): 3725–3730. doi: 10.1109/TAP.2023.3240861.
|
[58] |
BHATTACHARJEE A and DWARI S. Design of an anisotropic reconfigurable reflective polarization converter for realizing circular polarization-reconfigurable antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(12): 2392–2396. doi: 10.1109/LAWP.2022.3194347.
|
[59] |
PRAMANIK S, BAKSHI S C, KOLEY C, et al. Active metasurface-based reconfigurable polarization converter with multiple and simultaneous functionalities[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 22(3): 522–526. doi: 10.1109/lawp.2022.3217130.
|
[60] |
MA Qian, HONG Qiaoru, BAI Guodong, et al. Editing arbitrarily linear polarizations using programmable metasurface[J]. Physical Review Applied, 2020, 13(2): 021003. doi: 10.1103/PhysRevApplied.13.021003.
|
[61] |
GAO Xi, YANG Wanli, MA Huifeng, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6086–6095. doi: 10.1109/TAP.2018.2866636.
|
[62] |
于惠存, 曹祥玉, 高军, 等. 一种宽带可重构反射型极化旋转表面[J]. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041.
YU Huicun, CAO Xiangyu, GAO Jun, et al. Broadband reconfigurable reflective polarization convertor[J]. Acta Physica Sinica, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041.
|
[63] |
YU Huicun, CAO Xiangyu, GAO Jun, et al. Design of a wideband and reconfigurable polarization converter using a manipulable metasurface[J]. Optical Materials Express, 2018, 8(11): 3373–3381. doi: 10.1364/OME.8.003373.
|
[64] |
GUO Zexu, CAO Xiangyu, GAO Jun, et al. A novel reconfigurable metasurface with coincident and ultra-wideband LTL and LTC polarization conversion functions[J]. Radioengineering, 2019, 28(4): 696–702. doi: 10.13164/re.2019.0696.
|
[65] |
TAO Zui, WAN Xiang, PAN Baicao, et al. Reconfigurable conversions of reflection, transmission, and polarization states using active metasurface[J]. Applied Physics Letters, 2017, 110(12): 121901. doi: 10.1063/1.4979033.
|
[66] |
LI You, WANG Yi, and CAO Qunsheng. Design of a multifunctional reconfigurable metasurface for polarization and propagation manipulation[J]. IEEE Access, 2019, 7: 129183–129191. doi: 10.1109/ACCESS.2019.2939200.
|
[67] |
WANG Ping, ZHANG Yong, WANG Yu, et al. Multifunctional polarization converter based on multilayer reconfigurable metasurface[J]. Defence Technology, 2023, 28: 136–145. doi: 10.1016/j.dt.2022.12.008.
|
[68] |
YANG Jianing, ZHANG Yanting, TANG Mingchun, et al. A reconfigurable asymmetric-transmission metasurface for dynamic manipulation of transmission, reflection, and polarization[J]. Journal of Applied Physics, 2023, 133(8): 083101. doi: 10.1063/5.0134540.
|
[69] |
SHI Xin, QIU Tianshuo, WANG Jiafu, et al. Metasurface inverse design using machine learning approaches[J]. Journal of Physics D: Applied Physics, 2020, 53(27): 275105. doi: 10.1088/1361-6463/ab8036.
|
[70] |
HU Yanwen, MA Yaodong, ZHANG Tingrong, et al. Inverse design of transmission-type linear-to-circular polarization control metasurface based on deep learning[J]. Journal of Physics D: Applied Physics, 2023, 56(47): 475001. doi: 10.1088/1361-6463/acefdf.
|