SU Hanning, PAN Jiameng, BAO Qinglong, et al. Anti-interrupted sampling repeater jamming method in the waveform domain before matched filtering[J]. Journal of Radars, 2024, 13(1): 240–252. doi: 10.12000/JR23149
Citation: YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137

Recent Advances in Reconfigurable Metasurfaces and Their Applications

DOI: 10.12000/JR20137 CSTR: 32380.14.JR20137
Funds:  The National Natural Science Foundation of China (61671464, 61701523, 61801508), The Natural Science Basic Research Program of Shaanxi Province (2019JQ-103, 2020JM-350), Young Talents Support Program of Shaanxi Province (20200108), Postdoctoral Innovative Talents Support Program of China (BX20180375), Postdoctoral Science Foundation of China (2019M653960)
More Information
  • Corresponding author: YANG Huanhuan, jianye8901@126.com; CAO Xiangyu, xiangyucaokdy@163.com
  • Received Date: 2020-11-01
  • Rev Recd Date: 2021-01-19
  • Available Online: 2021-02-22
  • Publish Date: 2021-04-28
  • Recently, reconfigurable metasurfaces have attracted intense attention in the field of electromagnetic metasurfaces. Compared with other metasurfaces, reconfigurable metasurfaces that uses steerable devices or materials to control the electromagnetic wave in real time are more versatile and show great promise in engineering applications. Our team has continuously explored advances of reconfigurable metasurfaces and also studied the microwave region from the perspectives of theory, technique and applications. This study reviews the research history of reconfigurable metasurfaces and summarizes some of our previous works, including a study on the amplitude, phase and polarization modulation of electromagnetic waves and their applications. Finally, the study discusses future challenges and possibilities for reconfigurable metasurfaces.

     

  • [1]
    孙树林, 何琼, 周磊. 电磁超表面[J]. 物理, 2015, 44(6): 366–376. doi: 10.7693/wl20150603

    SUN Shulin, HE Qiong, and ZHOU Lei. Electromagnetic metasurfaces[J]. Physics, 2015, 44(6): 366–376. doi: 10.7693/wl20150603
    [2]
    汪国平. 超材料与超表面介绍[J]. 光学与光电技术, 2020, 18(5): 5–9. doi: 10.19519/j.cnki.1672-3392.2020.05.002

    WANG Guoping. Introduction to metamaterials and metasurfaces[J]. Optics &Optoelectronic Technology, 2020, 18(5): 5–9. doi: 10.19519/j.cnki.1672-3392.2020.05.002
    [3]
    YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    [4]
    CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218.
    [5]
    GIOVAMPAOLA C D and ENGHETA N. Digital metamaterials[J]. Nature Materials, 2014, 13(12): 1115–1121. doi: 10.1038/nmat4082
    [6]
    崔铁军. 电磁超材料—从等效媒质到现场可编程系统[J]. 中国科学: 信息科学, 2020, 50(10): 1427–1461. doi: 10.1360/SSI-2020-0123

    CUI Tiejun. Electromagnetic metamaterials—from effective media to field programmable systems[J]. Scientia Sinica Informationis, 2020, 50(10): 1427–1461. doi: 10.1360/SSI-2020-0123
    [7]
    XU Wenhua, HE Yun, KONG Peng, et al. An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications[J]. Journal of Applied Physics, 2015, 118(18): 184903. doi: 10.1063/1.4934683
    [8]
    ZHU Bo O, ZHAO Junming, and FENG Yijun. Active impedance metasurface with full 360 reflection phase tuning[J]. Scientific Reports, 2013, 3: 3059. doi: 10.1038/srep03059
    [9]
    CHEN Ke, FENG Yijun, MONTICONE F, et al. A reconfigurable active huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422
    [10]
    MA Xiaoliang, PAN Wenbo, HUANG Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945–949. doi: 10.1002/adom.201400212
    [11]
    HUANG Cheng, ZHANG Changlei, YANG Jianing, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485. doi: 10.1002/adom.201700485
    [12]
    XU Hexiu, MA Shaojie, LUO Weijie, et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces[J]. Applied Physics Letters, 2016, 109(19): 193506. doi: 10.1063/1.4967438
    [13]
    WANG Jiayun, YANG Rongcao, MA Runbo, et al. Reconfigurable multifunctional metasurface for broadband polarization conversion and perfect absorption[J]. IEEE Access, 2020, 8: 105815–105823. doi: 10.1109/ACCESS.2020.3000042
    [14]
    COSTA F, MONORCHIO A, and VASTANTE G P. Tunable high-impedance surface with a reduced number of varactors[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 11–13. doi: 10.1109/LAWP.2011.2107723
    [15]
    BRAY M G, BAYRAKTAR Z, and WERNER D H. GA optimized ultra-thin tunable EBG AMC surfaces[C]. 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, USA, 2006: 3–8.
    [16]
    杨欢欢, 杨帆, 许慎恒, 等. Ku波段编码式电控超薄周期单元设计与验证[J]. 物理学报, 2016, 65(5): 054102. doi: 10.7498/aps.65.054102

    YANG Huanhuan, YANG Fan, XU Shenheng, et al. Design and verification of an electronically controllable ultrathin coding periodic element in Ku band[J]. Acta Physica Sinica, 2016, 65(5): 054102. doi: 10.7498/aps.65.054102
    [17]
    CHEN Weiting, YANG Kuangyu, WANG C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225–230. doi: 10.1021/nl403811d
    [18]
    周仕浩, 房欣宇, 李猛猛, 等. S/X双频带吸波实时可调的吸波器[J]. 物理学报, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606

    ZHOU Shihao, FANG Xinyu, LI Mengmeng, et al. S/X dual-band real-time modulated frequency selective surface based absorber[J]. Acta Physica Sinica, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [19]
    DING Yuxuan, LI Mengyao, SU Jianxun, et al. Ultrawideband frequency-selective absorber designed with an adjustable and highly selective notch[J]. IEEE Transactions on Antennas and Propagation, 2020, . doi: 10.1109/TAP.2020.3026889
    [20]
    LI You, LI Huangyan, WANG Yunwen, et al. A novel switchable absorber/linear converter based on active metasurface and its application[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7688–7693. doi: 10.1109/TAP.2020.2980301
    [21]
    YANG Huanhuan, YANG Fan, XU Shenheng, et al. A 1-bit multi-polarization reflectarray element for reconfigurable large-aperture antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 581–584. doi: 10.1109/LAWP.2016.2590478
    [22]
    SIEVENPIPER D F, SCHAFFNER J H, SONG H J, et al. Two-dimensional beam steering using an electrically tunable impedance surface[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2713–2722. doi: 10.1109/TAP.2003.817558
    [23]
    HU W, ISMAIL M Y, CAHILL R, et al. Electronically reconfigurable monopulse reflectarray antenna with liquid crystal substrate[C]. The 2nd European Conference on Antennas and Propagation, Edinburgh, UK, 2007.
    [24]
    LUO Xinyao, GUO Wenlong, CHEN Ke, et al. Active cylindrical metasurface with spatial reconfigurability for tunable backward scattering reduction[J]. IEEE Transactions on Antennas and Propagation, 2020, in press. doi: 10.1109/TAP.2020.3037728
    [25]
    杨帆, 许慎恒, 刘骁, 等. 基于界面电磁学的新型相控阵天线[J]. 电波科学学报, 2018, 33(3): 256–265. doi: 10.13443/j.cjors.2018052401

    YANG Fan, XU Shenheng, LIU Xiao, et al. Novel phased array antennas based on surface electromagnetics[J]. Chinese Journal of Radio Science, 2018, 33(3): 256–265. doi: 10.13443/j.cjors.2018052401
    [26]
    YANG Xue, XU Shenheng, YANG Fan, et al. A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 3959–3966. doi: 10.1109/TAP.2017.2708079
    [27]
    YANG Xue, XU Shenheng, YANG Fan, et al. A mechanically reconfigurable reflectarray with slotted patches of tunable height[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 555–558. doi: 10.1109/LAWP.2018.2802701
    [28]
    YANG Huanhuan, YANG Fan, XU Shenheng, et al. A 1-bit 10×10 reconfigurable reflectarray antenna: Design, optimization, and experiment[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 2246–2254. doi: 10.1109/TAP.2016.2550178
    [29]
    LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light: Science & Applications, 2019, 8: 97.
    [30]
    LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8: 197. doi: 10.1038/s41467-017-00164-9
    [31]
    WANG Ling, YANG Yang, LI Shufang, et al. Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide[J]. IEEE Photonics Journal, 2020, 12(3): 4600712.
    [32]
    YANG Huanhuan, CAO Xiangyu, YANG Fan, et al. A programmable metasurface with dynamic polarization, scattering and focusing control[J]. Scientific Reports, 2016, 6: 35692. doi: 10.1038/srep35692
    [33]
    CUI Tiejun, LIU Shuo, and LI Lianlin. Information entropy of coding metasurface[J]. Light: Science & Applications, 2016, 5: e16172.
    [34]
    ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9: 4334. doi: 10.1038/s41467-018-06802-0
    [35]
    LUO Zhangjie, WANG Qiang, ZHANG Xinge, et al. Intensity‐dependent metasurface with digitally reconfigurable distribution of nonlinearity[J]. Advanced Optical Materials, 2019, 7(19): 1900792. doi: 10.1002/adom.201900792
    [36]
    WAN Xiang, ZHANG Qian, CHEN Tianyi, et al. Multichannel direct transmissions of near-field information[J]. Light: Science & Applications, 2019, 8: 60.
    [37]
    DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi: 10.1002/admt.201900044
    [38]
    MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8: 98.
    [39]
    DÍAZ-RUBIO A, TORRENT D, CARBONELL J, et al. Extraordinary absorption by a thin dielectric slab backed with a metasurface[J]. Physical Review B, 2014, 89(24): 245123. doi: 10.1103/PhysRevB.89.245123
    [40]
    杨欢欢. 新型电磁表面及其可重构阵列天线应用研究[D]. [博士论文], 空军工程大学, 2016.

    YANG Huanhuan. Research on novel electromagnetic surface and reconfigurable reflectarrays[D]. [Ph.D. dissertation], Air Force Engineering University, 2016.
    [41]
    HUM S V and PERRUISSEAU-CARRIER J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 183–198. doi: 10.1109/TAP.2013.2287296
    [42]
    AL-NUAIMI M K T, HE Yejun, and HONG Wei. Design of 1-bit coding engineered reflectors for EM-wave shaping and RCS modifications[J]. IEEE Access, 2018, 6: 75422–75428. doi: 10.1109/ACCESS.2018.2883721
    [43]
    VENNERI F, COSTANZO S, and DI MASSA G. Design and validation of a reconfigurable single varactor-tuned reflectarray[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(2): 635–645. doi: 10.1109/TAP.2012.2226229
    [44]
    范小龙. 基于MEMS开关的有源可重构频率选择表面的研究与设计[D]. [硕士论文], 南京理工大学, 2014.

    FAN Xiaolong. Reseach and design of active reconfigurable frequency selective surface based on MEMS switches[D]. [Master dissertation], Nanjing University of Science and Technology, 2014.
    [45]
    OLOUMI D, MOGHADAS H, and MOUSAVI P. Dual-band orthogonally-polarized slotted-Lozenge reflective unit cell tuned by MEMS varactor[C]. The 2012 IEEE International Symposium on Antennas and Propagation, Chicago, USA, 2012.
    [46]
    HUANG Xianjun, ZHANG Xiao, HU Zhirun, et al. Design of broadband and tunable terahertz absorbers based on graphene metasurface: Equivalent circuit model approach[J]. IET Microwaves, Antennas & Propagation, 2015, 9(4): 307–312. doi: 10.1049/iet-map.2014.0152
    [47]
    TORABI E S, FALLAHI A, and YAHAGHI A. Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1464–1467. doi: 10.1109/TAP.2016.2647580
    [48]
    ZENG Chao, LIU Xueming, and WANG Guoxi. Electrically tunable graphene plasmonic quasicrystal metasurfaces for transformation optics[J]. Scientific Reports, 2014, 4: 5763.
    [49]
    SAVO S, SHREKENHAMER D, and PADILLA W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Advanced Optical Materials, 2014, 2(3): 275–279. doi: 10.1002/adom.201300384
    [50]
    VASIĆ B, ISIĆ G, BECCHERELLI R, et al. Tunable beam steering at terahertz frequencies using reconfigurable metasurfaces coupled with liquid crystals[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(5): 7701609.
    [51]
    杨欢欢, 曹祥玉, 高军, 等. 基于电磁谐振分离的宽带低雷达截面超材料吸波体[J]. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101

    YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation[J]. Acta Physica Sinica, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [52]
    LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
    [53]
    马嘉俊. 基于分形人工电磁材料吸波特性的阵列天线隐身技术研究[D]. 空军工程大学, 2014.

    MA Jiajun. Radar cross section reduction of antenna array based on the absorption of fractal metamaterial[D]. Air Force Engineering University, 2014.
    [54]
    ZHANG Guowen, GAO Jun, CAO Xiangyu, et al. An ultra-thin low-frequency tunable metamaterial absorber based on lumped element[J]. Radioengineering, 2019, 28(3): 579–584.
    [55]
    CARRASCO E, BARBA M, and ENCINAR J A. X-band reflectarray antenna with switching-beam using PIN diodes and gathered elements[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(12): 5700–5708. doi: 10.1109/TAP.2012.2208612
    [56]
    MONTORI S, CACCIAMANI F, GATTI R V, et al. A transportable reflectarray antenna for satellite Ku-band emergency communications[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1393–1407. doi: 10.1109/TAP.2015.2398128
    [57]
    YANG Huanhuan, YANG Fan, CAO Xiangyu, et al. A 1600-element dual-frequency electronically reconfigurable reflectarray at X/Ku-band[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3024–3032. doi: 10.1109/TAP.2017.2694703
    [58]
    TIAN Jianghao, CAO Xiangyu, GAO Jun, et al. Design of a low loss and broadband active element of reconfigurable reflectarray antennas[J]. Optical Materials Express, 2019, 9(10): 4104–4114. doi: 10.1364/OME.9.004104
    [59]
    田江浩. 基于可重构技术的反射型多功能超表面特性研究[D]. [硕士论文], 空军工程大学, 2019.

    TIAN Jianghao. Research on reflective multi-functional metasurface based on reconfigurable technology[D]. [Master dissertation], Air Force Engineering University, 2019.
    [60]
    LI Tong, YANG Huanhuan, LI Qi, et al. Dual-polarised and ultra-thin broadband AAMCs for both P and L bands applications[J]. IET Microwaves, Antennas & Propagation, 2019, 13(2): 185–189. doi: 10.1049/iet-map.2018.5151
    [61]
    吕世奇. 基于数字电磁超表面涡旋电磁波的优化技术研究[D]. [硕士论文], 空军工程大学, 2019.

    LÜ Shiqi. Research on optimization of vortex electromagnetic waves based on digital electromagnetic metasurface[D]. [Master dissertation], Air Force Engineering University, 2019.
    [62]
    ZHANG Chen, GAO Jun, CAO Xiangyu, et al. Multifunction tunable metasurface for entire-space electromagnetic wave manipulation[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 3301–3306. doi: 10.1109/TAP.2019.2929438
    [63]
    CAI Tong, WANG Guangming, TANG Shiwei, et al. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces[J]. Physical Review Applied, 2017, 8(3): 034033. doi: 10.1103/PhysRevApplied.8.034033
    [64]
    于惠存, 曹祥玉, 高军, 等. 一种宽带可重构反射型极化旋转表面[J]. 物理学报, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041

    YU Huicun, CAO Xiangyu, GAO Jun, et al. Broadband reconfigurable reflective polarization convertor[J]. Acta Physica Sinica, 2018, 67(22): 224101. doi: 10.7498/aps.67.20181041
    [65]
    YU Huicun, CAO Xiangyu, GAO Jun, et al. Design of a wideband and reconfigurable polarization converter using a manipulable metasurface[J]. Optical Materials Express, 2018, 8(11): 3373–3381. doi: 10.1364/OME.8.003373
    [66]
    TIAN Jianghao, CAO Xiangyu, GAO Jun, et al. A reconfigurable ultra-wideband polarization converter based on metasurface incorporated with PIN diodes[J]. Journal of Applied Physics, 2019, 125(13): 135105. doi: 10.1063/1.5067383
    [67]
    GUO Zexu, CAO Xiangyu, GAO Jun, et al. A novel reconfigurable metasurface with coincident and ultra- wideband LTL and LTC polarization conversion functions[J]. Radio Engineering, 2019, 28(4): 696–702.
    [68]
    LI Tong, YANG Huanhuan, LI Qi, et al. Active metasurface for broadband radiation and integrated low radar cross section[J]. Optical Materials Express, 2019, 9(3): 1161–1172. doi: 10.1364/OME.9.001161
    [69]
    韩江枫. 电磁超表面幅相特性调控及应用研究[D]. [博士论文], 空军工程大学, 2020.

    HAN Jiangfeng. Research on amplitude and phase characteristics of metasurfaces and its aoolications[D]. [Ph. D. dissertation], Air Force Engineering University, 2020.
    [70]
    ZHANG Di, CAO Xiangyu, YANG Huanhuan, et al. Multiple OAM vortex beams generation using 1-bit metasurface[J]. Optics Express, 2018, 26(19): 24804–24815. doi: 10.1364/OE.26.024804
    [71]
    ZHANG Di, CAO Xiangyu, YANG Huanhuan, et al. Radiation performance synthesis for OAM vortex wave generated by reflective metasurface[J]. IEEE Access, 2018, 6: 28691–28701. doi: 10.1109/ACCESS.2018.2839099
    [72]
    ZHANG Di, CAO Xiangyu, YANG Huanhuan, et al. Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface[J]. Chinese Physics B, 2019, 28(3): 034204. doi: 10.1088/1674-1056/28/3/034204
    [73]
    张迪. 新型数字电磁表面技术及其在涡旋电磁场中的应用研究[D]. [博士论文], 空军工程大学, 2019.

    ZHANG Di. Research on novel digital electromagnetic metasurface and its application in vortex electromagnetic field[D]. [Ph. D. dissertation], Air Force Engineering University, 2019.
  • Relative Articles

    [1]WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105
    [2]KONG Lingjiang, GUO Shisheng, CHEN Jiahui, WU Peilun, CUI Guolong. Overview and Prospects of Multipath Exploitation Radar Target Detection Technology[J]. Journal of Radars, 2024, 13(1): 23-45. doi: 10.12000/JR23134
    [3]ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133
    [4]GUAN Jian, LIU Ningbo, WANG Guoqing, DING Hao, DONG Yunlong, HUANG Yong, TIAN Kaixiang, ZHANG Mengyu. Sea-detecting Radar Experiment and Target Feature Data Acquisition for Dual Polarization Multistate Scattering Dataset of Marine Targets(in English)[J]. Journal of Radars, 2023, 12(2): 456-469. doi: 10.12000/JR23029
    [5]DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037
    [6]WU Wenjun, TANG Bo, TANG Jun, HU Yuankui. Waveform Design for Dual-function Radar-communication Systems in Clutter[J]. Journal of Radars, 2022, 11(4): 570-580. doi: 10.12000/JR22105
    [7]ZHANG Chao, WANG Yuanhe, JIANG Xuefeng. Quantum Radar with Vortex Microwave Photons[J]. Journal of Radars, 2021, 10(5): 749-759. doi: 10.12000/JR21095
    [8]LIU Ningbo, DING Hao, HUANG Yong, DONG Yunlong, WANG Guoqing, DONG Kai. Annual Progress of the Sea-detecting X-band Radar and Data Acquisition Program[J]. Journal of Radars, 2021, 10(1): 173-182. doi: 10.12000/JR21011
    [9]WAN Xianrong, LIU Tongtong, YI Jianxin, DAN Yangpeng, HU Xiaokai. System Design and Target Detection Experiments for LTE-based Passive Radar[J]. Journal of Radars, 2020, 9(6): 967-973. doi: 10.12000/JR18111
    [10]CHEN Shichao, GAO Heting, LUO Feng. Target Detection in Sea Clutter Based on Combined Characteristics of Polarization[J]. Journal of Radars, 2020, 9(4): 664-673. doi: 10.12000/JR20072
    [11]GUAN Jian. Summary of Marine Radar Target Characteristics[J]. Journal of Radars, 2020, 9(4): 674-683. doi: 10.12000/JR20114
    [12]XU Shuwen, BAI Xiaohui, GUO Zixun, SHUI Penglang. Status and Prospects of Feature-based Detection Methods for Floating Targets on the Sea Surface (in English)[J]. Journal of Radars, 2020, 9(4): 684-714. doi: 10.12000/JR20084
    [13]LIU Ningbo, DONG Yunlong, WANG Guoqing, DING Hao, HUANG Yong, GUAN Jian, CHEN Xiaolong, HE You. Sea-detecting X-band Radar and Data Acquisition Program (in English)[J]. Journal of Radars, 2019, 8(5): 656-667. doi: 10.12000/JR19089
    [14]Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040
    [15]Wang Longgang, Li Lianlin. Short-range Radar Detection with (M, N)-Coprime Array Configurations(in English)[J]. Journal of Radars, 2016, 5(3): 244-253. doi: 10.12000/JR16022
    [16]Ding Hao, Dong Yunlong, Liu Ningbo, Wang Guoqing, Guan Jian. Overview and Prospects of Research on Sea Clutter Property Cognition[J]. Journal of Radars, 2016, 5(5): 499-516. doi: 10.12000/JR16069
    [17]Hu Cheng, Liu Changjiang, Zeng Tao. Bistatic Forward Scattering Radar Detection and Imaging[J]. Journal of Radars, 2016, 5(3): 229-243. doi: 10.12000/JR16058
    [18]Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125
    [19]Chen Xiao-long, Dong Yun-long, Li Xiu-you, Guan Jian. Modeling of Micromotion and Analysis of Properties of Rigid Marine Targets[J]. Journal of Radars, 2015, 4(6): 630-638. doi: 10.12000/JR15079
    [20]Yan Liang, Sun Pei-lin, Yi Lei, Han Ning, Tang Jun. Modeling of Compound Gaussian Sea Clutter Based on Inverse Gaussian Distribution[J]. Journal of Radars, 2013, 2(4): 461-465. doi: 10.3724/SP.J.1300.2013.13083
  • Cited by

    Periodical cited type(6)

    1. 邢孟道,马鹏辉,楼屹杉,孙光才,林浩. 合成孔径雷达快速后向投影算法综述. 雷达学报. 2024(01): 1-22 . 本站查看
    2. 周开心,刘丹阳,朱永锋,张永杰,周剑雄. 强杂波背景下调频步进DBS技术研究. 系统工程与电子技术. 2024(09): 2960-2967 .
    3. 匡辉,于海锋,高贺利,刘磊,刘杰,张润宁. 超高分辨率星载SAR系统多子带信号处理技术研究. 信号处理. 2022(04): 879-888 .
    4. 吕明久,陈文峰,徐芳,赵欣,杨军. 基于原子范数最小化的步进频率ISAR一维高分辨距离成像方法. 电子与信息学报. 2021(08): 2267-2275 .
    5. 张亦凡,黄平平,徐伟,谭维贤,高志奇. 星载斜视滑动聚束SAR子孔径成像处理算法研究. 信号处理. 2021(08): 1525-1532 .
    6. 吕明久,徐芳,赵丽,陈莉,陈浩. 载频不同分布方式下RSF波形稀疏重构性能分析. 空军预警学院学报. 2020(05): 319-324 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.5 %FULLTEXT: 30.5 %META: 62.3 %META: 62.3 %PDF: 7.2 %PDF: 7.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %其他: 1.0 %其他: 1.0 %Bacoor: 0.2 %Bacoor: 0.2 %China: 1.8 %China: 1.8 %Gwynn Oak: 0.0 %Gwynn Oak: 0.0 %Kennedy Town: 0.0 %Kennedy Town: 0.0 %Saudi Arabia: 0.1 %Saudi Arabia: 0.1 %Singapore: 0.2 %Singapore: 0.2 %Taichung: 0.0 %Taichung: 0.0 %United States: 0.4 %United States: 0.4 %[]: 0.4 %[]: 0.4 %上海: 1.6 %上海: 1.6 %东京都: 0.0 %东京都: 0.0 %东莞: 0.6 %东莞: 0.6 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.2 %临沂: 0.2 %丹东: 0.0 %丹东: 0.0 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %九江: 0.2 %九江: 0.2 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.1 %佛山: 0.1 %保定: 0.2 %保定: 0.2 %六安: 0.0 %六安: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.1 %兰辛: 0.1 %凤凰城: 0.0 %凤凰城: 0.0 %加利福尼亚: 0.0 %加利福尼亚: 0.0 %北京: 6.5 %北京: 6.5 %十堰: 0.1 %十堰: 0.1 %南京: 2.5 %南京: 2.5 %南充: 0.0 %南充: 0.0 %南宁: 0.1 %南宁: 0.1 %南昌: 0.2 %南昌: 0.2 %南通: 0.1 %南通: 0.1 %卡拉奇: 0.1 %卡拉奇: 0.1 %厦门: 0.0 %厦门: 0.0 %台中: 0.0 %台中: 0.0 %台北: 0.2 %台北: 0.2 %台州: 0.1 %台州: 0.1 %台湾: 0.1 %台湾: 0.1 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.7 %合肥: 0.7 %周口: 0.0 %周口: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 0.8 %哈尔滨: 0.8 %商洛: 0.1 %商洛: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %坦佩: 0.0 %坦佩: 0.0 %大同: 0.0 %大同: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.7 %天津: 0.7 %太原: 0.2 %太原: 0.2 %威海: 0.1 %威海: 0.1 %孟买: 0.5 %孟买: 0.5 %宁波: 0.0 %宁波: 0.0 %安庆: 0.1 %安庆: 0.1 %安康: 0.1 %安康: 0.1 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.4 %宣城: 0.4 %宿州: 0.0 %宿州: 0.0 %巴中: 0.1 %巴中: 0.1 %常州: 0.1 %常州: 0.1 %广元: 0.0 %广元: 0.0 %广州: 0.9 %广州: 0.9 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %开封: 0.7 %开封: 0.7 %张家口: 1.3 %张家口: 1.3 %张家界: 0.1 %张家界: 0.1 %徐州: 0.2 %徐州: 0.2 %德州: 0.0 %德州: 0.0 %德里: 0.1 %德里: 0.1 %忻州: 0.0 %忻州: 0.0 %恩施: 0.1 %恩施: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 1.2 %成都: 1.2 %扬州: 0.3 %扬州: 0.3 %新奥尔良: 0.0 %新奥尔良: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.6 %昆明: 0.6 %晋城: 0.0 %晋城: 0.0 %曼谷: 0.1 %曼谷: 0.1 %朝阳: 0.2 %朝阳: 0.2 %来宾: 0.0 %来宾: 0.0 %杭州: 4.3 %杭州: 4.3 %柳州: 0.1 %柳州: 0.1 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.2 %桂林: 0.2 %武汉: 0.9 %武汉: 0.9 %汉中: 0.0 %汉中: 0.0 %江门: 0.0 %江门: 0.0 %沈阳: 0.3 %沈阳: 0.3 %波士顿: 0.0 %波士顿: 0.0 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.1 %海口: 0.1 %淮北: 0.0 %淮北: 0.0 %淮南: 0.1 %淮南: 0.1 %深圳: 1.3 %深圳: 1.3 %温州: 0.2 %温州: 0.2 %渭南: 0.2 %渭南: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.2 %湘潭: 0.2 %漯河: 0.6 %漯河: 0.6 %潍坊: 0.0 %潍坊: 0.0 %玉林: 0.1 %玉林: 0.1 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.4 %石家庄: 0.4 %福冈县: 0.1 %福冈县: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.0 %米兰: 0.0 %纽约: 0.0 %纽约: 0.0 %绍兴: 0.0 %绍兴: 0.0 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 25.8 %芒廷维尤: 25.8 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.5 %苏州: 0.5 %荆州: 0.0 %荆州: 0.0 %菏泽: 0.0 %菏泽: 0.0 %萍乡: 0.1 %萍乡: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %葵涌: 0.2 %葵涌: 0.2 %蚌埠: 0.2 %蚌埠: 0.2 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.1 %衢州: 0.1 %西宁: 19.4 %西宁: 19.4 %西安: 2.7 %西安: 2.7 %西安市鄠邑区: 0.0 %西安市鄠邑区: 0.0 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.4 %运城: 0.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.4 %重庆: 0.4 %银川: 0.1 %银川: 0.1 %镇江: 0.1 %镇江: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 1.1 %长沙: 1.1 %长治: 0.1 %长治: 0.1 %雷恩: 0.1 %雷恩: 0.1 %青岛: 0.6 %青岛: 0.6 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %驻马店: 0.0 %驻马店: 0.0 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他BacoorChinaGwynn OakKennedy TownSaudi ArabiaSingaporeTaichungUnited States[]上海东京都东莞中山临汾临沂丹东丽水乌鲁木齐九江伦敦佛山保定六安兰州兰辛凤凰城加利福尼亚北京十堰南京南充南宁南昌南通卡拉奇厦门台中台北台州台湾台湾省合肥周口呼和浩特咸阳哈尔滨商洛嘉兴圣彼得堡坦佩大同大连天津太原威海孟买宁波安庆安康宝鸡宣城宿州巴中常州广元广州库比蒂诺开封张家口张家界徐州德州德里忻州恩施惠州成都扬州新奥尔良无锡昆明晋城曼谷朝阳来宾杭州柳州株洲格兰特县桂林武汉汉中江门沈阳波士顿泰米尔纳德洛杉矶洛阳济南海口淮北淮南深圳温州渭南湖州湘潭漯河潍坊玉林盐城石家庄福冈县福州秦皇岛米兰纽约绍兴绵阳芒廷维尤芜湖芝加哥苏州荆州菏泽萍乡葫芦岛葵涌蚌埠衡水衡阳衢州西宁西安西安市鄠邑区诺沃克贵阳运城邯郸郑州重庆银川镇江长春长沙长治雷恩青岛香港香港特别行政区驻马店齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(9342) PDF downloads(1361) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint