FANG Linlin, ZHOU Chao, WANG Rui, et al. RCS feature-aided insect target tracking algorithm[J]. Journal of Radars, 2019, 8(5): 598–605. doi: 10.12000/JR19067
Citation: DONG Yunlong, ZHANG Zhaoxiang, DING Hao, et al. Target detection in sea clutter using a three-feature prediction-based method[J]. Journal of Radars, 2023, 12(4): 762–775. doi: 10.12000/JR23037

Target Detection in Sea Clutter Using a Three-feature Prediction-based Method

DOI: 10.12000/JR23037
Funds:  The National Natural Science Foundation of China (62101583, 61871392), The Taishan Scholars Program (tsqn202211246)
More Information
  • Corresponding author: DING Hao, hao3431@tom.com; HUANG Yong, huangyong2003@163.com
  • Received Date: 2023-03-23
  • Rev Recd Date: 2023-05-11
  • Available Online: 2023-05-16
  • Publish Date: 2023-05-31
  • Feature-based detection methods are often employed to address the challenges related to small-target detection in sea clutter. These methods determine the presence or absence of a target based on whether the feature value falls within a certain judgment region. However, such methods often overlook the temporal information between features. In fact, the temporal correlation between historical and current frame data can provide valuable a priori information, thereby enabling the calculation of the feature value of the current frame. To this end, this paper proposes a novel method for time-series modeling and prediction of radar echoes using an Auto-Regressive (AR) model in the feature domain, leveraging a priori information from historical frame features. To verify the feasibility of AR modeling and prediction of feature sequences, the AR model was first employed in the modeling and 1-step prediction analysis of Average Amplitude (AA), Relative Doppler Peak Height (RDPH), and Frequency Peak-to-Average Ratio (FPAR) feature sequences. Next, a technique for extracting feature values by utilizing the temporal information of historical frame features as a priori information was proposed. Based on this approach, a small-target detection method predicated on three-feature prediction, which can effectively utilize the temporal information of historical frame features for AA, RDPH, and FPAR, was proposed. Finally, the validity of the proposed method was verified using a measured data set.

     

  • [1]
    关键. 雷达海上目标特性综述[J]. 雷达学报, 2020, 9(4): 674–683. doi: 10.12000/JR20114

    GUAN Jian. Summary of marine radar target characteristics[J]. Journal of Radars, 2020, 9(4): 674–683. doi: 10.12000/JR20114
    [2]
    张坤, 水鹏朗, 王光辉. 相参雷达K分布海杂波背景下非相干积累恒虚警检测方法[J]. 电子与信息学报, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441

    ZHANG Kun, SHUI Penglang, and WANG Guanghui. Non-coherent integration constant false alarm rate detectors against k-distributed sea clutter for coherent radar systems[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441
    [3]
    许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684–714. doi: 10.12000/JR20084

    XU Shuwen, BAI Xiaohui, GUO Zixun, et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9(4): 684–714. doi: 10.12000/JR20084
    [4]
    LO T, LEUNG H, LITVA J, et al. Fractal characterisation of sea-scattered signals and detection of sea-surface targets[J]. IEE Proceedings F-Radar and Signal Processing, 1993, 140(4): 243–250. doi: 10.1049/ip-f-2.1993.0034
    [5]
    FAN Yifei, TAO Mingliang, and SU Jia. Multifractal correlation analysis of autoregressive spectrum-based feature learning for target detection within sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5108811. doi: 10.1109/TGRS.2021.3137466
    [6]
    FAN Yifei, TAO Mingliang, SU Jia, et al. Weak target detection based on joint fractal characteristics of autoregressive spectrum in sea clutter background[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1824–1828. doi: 10.1109/LGRS.2019.2912329
    [7]
    BI Xiaowen, GUO Shenglong, YANG Yunxiu, et al. Adaptive target extraction method in sea clutter based on fractional fourier filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5115609. doi: 10.1109/TGRS.2022.3192893
    [8]
    SHI Sainan and SHUI Penglang. Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6395–6411. doi: 10.1109/TGRS.2018.2838260
    [9]
    XU Shuwen, ZHENG Jibin, PU Jia, et al. Sea-surface floating small target detection based on polarization features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1505–1509. doi: 10.1109/LGRS.2018.2852560
    [10]
    陈世超, 高鹤婷, 罗丰. 基于极化联合特征的海面目标检测方法[J]. 雷达学报, 2020, 9(4): 664–673. doi: 10.12000/JR20072

    CHEN Shichao, GAO Heting, and LUO Feng. Target detection in sea clutter based on combined characteristics of polarization[J]. Journal of Radars, 2020, 9(4): 664–673. doi: 10.12000/JR20072
    [11]
    YAN Kun, BAI Yu, WU H C, et al. Robust target detection within sea clutter based on graphs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7093–7103. doi: 10.1109/TGRS.2019.2911451
    [12]
    时艳玲, 姚婷婷, 郭亚星. 基于图连通密度的海面漂浮小目标检测[J]. 电子与信息学报, 2021, 43(11): 3185–3192. doi: 10.11999/JEIT201028

    SHI Yanling, YAO Tingting, and GUO Yaxing. Floating small target detection based on graph connected density in sea surface[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3185–3192. doi: 10.11999/JEIT201028
    [13]
    XIE Jianda and XU Xiaojian. Phase-feature-based detection of small targets in sea clutter[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3507405. doi: 10.1109/LGRS.2021.3093620
    [14]
    WU Xijie, DING Hao, LIU Ningbo, et al. A method for detecting small targets in sea surface based on singular spectrum analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5110817. doi: 10.1109/TGRS.2021.3138488
    [15]
    关键, 伍僖杰, 丁昊, 等. 基于对角积分双谱的海面慢速小目标检测方法[J]. 电子与信息学报, 2022, 44(7): 2449–2460. doi: 10.11999/JEIT210408

    GUAN Jian, WU Xijie, DING Hao, et al. A method for detecting small slow targets in sea surface based on diagonal integrated bispectrum[J]. Journal of Electronics &Information Technology, 2022, 44(7): 2449–2460. doi: 10.11999/JEIT210408
    [16]
    WU Xijie, DING Hao, LIU Ningbo, et al. Priori information-based feature extraction method for small target detection in sea clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5115315. doi: 10.1109/TGRS.2022.3188046
    [17]
    HAYKIN S, BAKKER R, and CURRIE B W. Uncovering nonlinear dynamics-the case study of sea clutter[J]. Proceedings of the IEEE, 2002, 90(5): 860–881. doi: 10.1109/JPROC.2002.1015011
    [18]
    NOHARA T J and HAYKIN S. AR-based growler detection in sea clutter[J]. IEEE Transactions on Signal Processing, 1993, 41(3): 1259–1271. doi: 10.1109/78.205728
    [19]
    黄红梅. 应用时间序列分析[M]. 北京: 清华大学出版社, 2016: 17–57.

    HUANG Hongmei. Apply Time Series Analysis[M]. Beijing: Tsinghua University Press, 2016: 17–57.
    [20]
    郑宁. 基于多源数据的高速铁路轨道几何异常状态检测方法研究[D]. [硕士论文], 北京交通大学, 2021: 22–40.

    ZHENG Ning. Research on high speed railway track geometric anomaly detection method based on multi­source data[D]. [Master dissertation], Beijing Jiaotong University, 2021: 22–40.
    [21]
    范剑青, 姚琦伟, 陈敏, 译. 非线性时间序列: 建模、预报及应用[M]. 北京: 高等教育出版社, 2005: 21–92.

    FAN Jianqing, YAO Qiwei, CHEN Min. translation. Nonlinear Time Series: Modeling, Forecasting, and Applications[M]. Beijing: Higher Education Press, 2005: 21–92.
    [22]
    SHUI Penglang, LI Dongchen, and XU Shuwen. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Transactions on Aerospace & Electronic Systems, 2014, 50(2): 1416–1430. doi: 10.1109/TAES.2014.120657
    [23]
    LI Yuzhou, XIE Pengcheng, TANG Zeshen, et al. SVM-based sea-surface small target detection: A false-alarm-rate-controllable approach[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1225–1229. doi: 10.1109/LGRS.2019.2894385
    [24]
    GUO Zixun and SHUI Penglang. Anomaly based sea-surface small target detection using K-nearest neighbor classification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4947–4964. doi: 10.1109/TAES.2020.3011868
    [25]
    The IPIX radar database[EB/OL]. http://soma.ece.mcmaster.ca/ipix/, 2021.
    [26]
    SHI Yanling, XIE Xiaoyan, and LI Dongchen. Range distributed floating target detection in sea clutter via feature-based detector[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1847–1850. doi: 10.1109/LGRS.2016.2614750
  • Relative Articles

    [1]CHEN Shaonan, GU Jiaming, XU Chao, SUN Yimiao, WANG Siran, CHEN Zhanye, LIU Shuo, LI Huidong, DAI Junyan, HE Yuan, CHENG Qiang. Fall Feature Simulation and Wi-Fi Sensing Dataset Construction Based on Time-Domain Digital Coding Metasurface[J]. Journal of Radars. doi: 10.12000/JR24247
    [2]LAN Lan, ZHANG Xiang, XU Jingwei, LIAO Guisheng. Main-lobe Deceptive Jammers with Array Radars Using Space-time Multidimensional Coding[J]. Journal of Radars, 2025, 14(2): 439-455. doi: 10.12000/JR24229
    [3]CHEN Yan, WANG Zhanling, PANG Chen, LI Yongzhen, WANG Zhuang. Radar Active Deception Jamming Recognition Method Based on the Time-varying Polarization-conversion Metasurface[J]. Journal of Radars, 2024, 13(4): 929-940. doi: 10.12000/JR24028
    [4]LI Zhaohong, XU Huaping, DUAN Shuhang, LI Jingwen. Performance Analysis of SAR Active Deception Jamming Detection Based on Interferometric Phase[J]. Journal of Radars, 2024, 13(6): 1327-1336. doi: 10.12000/JR24162
    [5]ZHOU Qunyan, WANG Siran, DAI Junyan, CHENG Qiang. Simultaneous Direction of Arrival Estimation and Radar Cross-section Reduction Based on Space-time-coding Digital Metasurfaces[J]. Journal of Radars, 2024, 13(1): 150-159. doi: 10.12000/JR23216
    [6]ZHANG Shunsheng, CHEN Shuang, CHEN Xiaoying, LIU Ying, WANG Wenqin. Active Deception Jamming Recognition Method in Multimodal Radar Based on Small Samples[J]. Journal of Radars, 2023, 12(4): 882-891. doi: 10.12000/JR23104
    [7]DU Siyu, LIU Zhixing, WU Yaojun, SHA Minghui, QUAN Yinghui. Dense-repeated Jamming Suppression Algorithm Based on the Support Vector Machine for Frequency Agility Radar[J]. Journal of Radars, 2023, 12(1): 173-185. doi: 10.12000/JR22065
    [8]JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167
    [9]LIU Zhixing, DU Siyu, WU Yaojun, SHA Minghui, XING Mengdao, QUAN Yinghui. Anti-interrupted Sampling Repeater Jamming Method for Interpulse and Intrapulse Frequency-agile Radar[J]. Journal of Radars, 2022, 11(2): 301-312. doi: 10.12000/JR22001
    [10]LIU Zhangmeng, YUAN Shuo, KANG Shiqian. Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train[J]. Journal of Radars, 2021, 10(4): 559-570. doi: 10.12000/JR21031
    [11]YASIR Saifullah, YANG Guomin, XU Feng. A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering[J]. Journal of Radars, 2021, 10(3): 382-390. doi: 10.12000/JR21061
    [12]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [13]WANG Yanfei, LI Heping, HAN Song. The Theory and Method of Pulse Coding for Radar and Its Applications[J]. Journal of Radars, 2019, 8(1): 1-16. doi: 10.12000/JR19023
    [14]ZENG Zheng, ZHANG Fubo, CHEN Longyong, BU Xiangxi, ZHOU Siyan. A Two-dimensional Mixed Baseline Method Based on MIMO-SAR for Countering Deceptive Jamming[J]. Journal of Radars, 2019, 8(1): 90-99. doi: 10.12000/JR18118
    [15]Wu Yufeng, Ye Shaohua, Feng Dazheng. Intra-pulse Spotlight SAR Imaging Method Based on Azimuth Phase Coding[J]. Journal of Radars, 2018, 7(4): 437-445. doi: 10.12000/JR17114
    [16]Xu Zhihuo, Shi Quan, Sun Ling. Novel Orthogonal Random Phase-Coded Pulsed Radar for Automotive Application[J]. Journal of Radars, 2018, 7(3): 364-375. doi: 10.12000/JR17083
    [17]Zhu Xiaojing, Li Fei, Wang Robert, Wang Wei, Sun Xiang. Range Ambiguity Suppression Approach for Quad-pol SAR Systems Based on Modified Azimuth Phase Coding[J]. Journal of Radars, 2017, 6(4): 420-431. doi: 10.12000/JR17015
    [18]Su Jian Song Zhi-yong Fu Qiang Long Zhao-fei, . Joint Tracking Method for the Unresolved Decoy and Target with Monopulse Radar[J]. Journal of Radars, 2015, 4(2): 160-171. doi: 10.12000/JR14094
    [19]Li Wei, Wang Xing-liang, Zou Kun, Xu Yi-meng, Zhang Qun. Anti Deceptive Jamming for MIMO Radar Based on Data Fusion and Notch Filtering (in English)[J]. Journal of Radars, 2012, 1(3): 246-252. doi: 10.3724/SP.J.1300.2012.20060
    [20]Liu Zhen, Wei Xi-zhang, Li Xiang. Novel Method of Unambiguous Moving Target Detection in Pulse-Doppler Radar with Random Pulse Repetition Interval[J]. Journal of Radars, 2012, 1(1): 28-35. doi: 10.3724/SP.J.1300.2013.10063
  • Cited by

    Periodical cited type(3)

    1. 周明纯. 舰载超短波电台编码调制可靠性测试研究. 环境技术. 2024(05): 19-25 .
    2. 施庆展,黄敬健,吴微微,马育红,王少植,郑滋浩,张晓发. 一种基于时间编码超表面的ISAR干扰方法. 电讯技术. 2024(10): 1553-1560 .
    3. 阮航,崔家豪,毛秀华,任建迎,罗镔延,曹航,李海峰. SAR目标识别对抗攻击综述:从数字域迈向物理域. 雷达学报. 2024(06): 1298-1326 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.2 %FULLTEXT: 16.2 %META: 76.5 %META: 76.5 %PDF: 7.3 %PDF: 7.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.5 %其他: 13.5 %其他: 0.2 %其他: 0.2 %Brazil: 0.4 %Brazil: 0.4 %China: 0.5 %China: 0.5 %India: 0.0 %India: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.1 %United States: 0.1 %Viet Nam: 0.2 %Viet Nam: 0.2 %[]: 0.7 %[]: 0.7 %上海: 0.5 %上海: 0.5 %上海市: 0.0 %上海市: 0.0 %中卫: 0.0 %中卫: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %兰辛: 0.1 %兰辛: 0.1 %加利福尼亚: 0.2 %加利福尼亚: 0.2 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %包头: 0.0 %包头: 0.0 %北京: 11.3 %北京: 11.3 %北海: 0.0 %北海: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.9 %南京: 0.9 %南宁: 0.1 %南宁: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.4 %台州: 0.4 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.1 %合肥: 0.1 %周口: 0.1 %周口: 0.1 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %圣保罗: 0.2 %圣保罗: 0.2 %大庆: 0.0 %大庆: 0.0 %大连: 0.1 %大连: 0.1 %大阪: 0.0 %大阪: 0.0 %天津: 0.4 %天津: 0.4 %太原: 0.1 %太原: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %岳阳: 0.0 %岳阳: 0.0 %巴中: 0.1 %巴中: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %常德: 0.0 %常德: 0.0 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.3 %库比蒂诺: 0.3 %开封: 0.0 %开封: 0.0 %张家口: 1.1 %张家口: 1.1 %张家口市: 0.1 %张家口市: 0.1 %怀化: 0.0 %怀化: 0.0 %成都: 0.7 %成都: 0.7 %扬州: 0.1 %扬州: 0.1 %新乡: 0.3 %新乡: 0.3 %新布朗斯维克: 0.1 %新布朗斯维克: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋中: 0.0 %晋中: 0.0 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 2.4 %杭州: 2.4 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.0 %桂林: 0.0 %武汉: 0.6 %武汉: 0.6 %汉堡: 0.0 %汉堡: 0.0 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %法兰克福: 0.1 %法兰克福: 0.1 %泰安: 0.0 %泰安: 0.0 %济南: 0.1 %济南: 0.1 %淮北: 0.0 %淮北: 0.0 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 0.5 %深圳: 0.5 %温州: 0.1 %温州: 0.1 %渭南: 0.0 %渭南: 0.0 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %滨州: 0.0 %滨州: 0.0 %漯河: 0.2 %漯河: 0.2 %潍坊: 0.0 %潍坊: 0.0 %烟台: 0.0 %烟台: 0.0 %焦作: 0.0 %焦作: 0.0 %焦作市: 0.0 %焦作市: 0.0 %玉林: 0.1 %玉林: 0.1 %珠海: 0.0 %珠海: 0.0 %白城: 0.1 %白城: 0.1 %石家庄: 0.5 %石家庄: 0.5 %石家庄市: 0.1 %石家庄市: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %芒廷维尤: 22.1 %芒廷维尤: 22.1 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.1 %苏州: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 33.2 %西宁: 33.2 %西安: 0.6 %西安: 0.6 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.3 %贵港: 0.3 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.3 %运城: 0.3 %连云港: 0.1 %连云港: 0.1 %郑州: 0.7 %郑州: 0.7 %重庆: 0.1 %重庆: 0.1 %铁岭: 0.0 %铁岭: 0.0 %长春: 0.2 %长春: 0.2 %长沙: 0.5 %长沙: 0.5 %长治: 0.1 %长治: 0.1 %阜阳: 0.1 %阜阳: 0.1 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.1 %青岛: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %鹰潭: 0.0 %鹰潭: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他其他BrazilChinaIndiaTaiwan, ChinaUnited StatesViet Nam[]上海上海市中卫临汾丹东佛山保定兰辛加利福尼亚加利福尼亚州包头北京北海十堰南京南宁台北台州台湾省合肥周口呼和浩特哈尔滨哥伦布唐山圣保罗大庆大连大阪天津太原安康宣城岳阳巴中巴彦淖尔常州常德广州库比蒂诺开封张家口张家口市怀化成都扬州新乡新布朗斯维克无锡昆明晋中晋城朝阳杭州格兰特县桂林武汉汉堡沈阳沧州法兰克福泰安济南淮北淮南淮安深圳温州渭南湖州湘潭滨州漯河潍坊烟台焦作焦作市玉林珠海白城石家庄石家庄市福州秦皇岛美国伊利诺斯芝加哥芒廷维尤芝加哥苏州衢州西宁西安诺沃克贵港贵阳赣州运城连云港郑州重庆铁岭长春长沙长治阜阳阳泉青岛香港特别行政区鹰潭龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1533) PDF downloads(325) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint