Citation: | WANG Yanfei, LI Heping, and HAN Song. The theory and method of pulse coding for radar and its applications[J]. Journal of Radars, 2019, 8(1): 1–16. doi: 10.12000/JR19023 |
[1] |
丁鹭飞, 耿富录. 雷达原理[M]. 第3版, 西安: 西安电子科技大学出版社, 2002: 1–22.
DING Lufei and GENG Fulu. Principle of Radar[M]. 3rd ed, Xi’an: Xidian University Press, 2002: 1–22.
|
[2] |
WEHNER D R. High Resolution Radar[M]. Norwood, MA: Artech House, 1987: 9–42.
|
[3] |
WILEY C A. Synthetic aperture radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(3): 440–443. doi: 10.1109/TAES.1985.310578
|
[4] |
STIMSON G W. Introduction to Airborne Radar[M]. 2nd ed, Mendham, NJ: SciTech Publishing, Inc., 1998: 393–431.
|
[5] |
CHEN C C and ANDREWS H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2–14. doi: 10.1109/TAES.1980.308873
|
[6] |
GRAHAM L C. Synthetic interferometer radar for topographic mapping[J]. Proceedings of the IEEE, 1974, 62(6): 763–768. doi: 10.1109/PROC.1974.9516
|
[7] |
ZEBKER H A and GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4993–4999. doi: 10.1029/JB091iB05p04993
|
[8] |
VAN ZYL J J, ZEBKER H A, and ELACHI C. Imaging radar polarization signatures: Theory and observation[J]. Radio Science, 1987, 22(4): 529–543. doi: 10.1029/RS022i004p00529
|
[9] |
CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995: 1–75.
|
[10] |
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
|
[11] |
BARANIUK R and STEEGHS P. Compressive radar imaging[C]. Proceedings of 2007 IEEE Radar Conference, Boston, MA, USA, 2007: 128–133.
|
[12] |
YOON Y S and AMIN M G. Compressed sensing technique for high-resolution radar imaging[C]. Proceedings of SPIE 6968, Signal Processing, Sensor Fusion, and Target Recognition XVII, Orlando, Florida, 2008: 69681A.
|
[13] |
刘记红, 徐少坤, 高勋章, 等. 压缩感知雷达成像技术综述[J]. 信号处理, 2011, 27(2): 251–260. doi: 10.3969/j.issn.1003-0530.2011.02.016
LIU Jihong, XU Shaokun, GAO Xunzhang, et al. A review of radar imaging technique based on compressed sensing[J]. Signal Processing, 2011, 27(2): 251–260. doi: 10.3969/j.issn.1003-0530.2011.02.016
|
[14] |
张弓, 杨萌, 张劲东, 等. 压缩感知在雷达目标探测与识别中的研究进展[J]. 数据采集与处理, 2012, 27(1): 1–12. doi: 10.3969/j.issn.1004-9037.2012.01.001
ZHANG Gong, YANG Meng, ZHANG Jindong, et al. Advances in theory and application of compressed sensing in radar target detection and recognition[J]. Journal of Data Acquisition &Processing, 2012, 27(1): 1–12. doi: 10.3969/j.issn.1004-9037.2012.01.001
|
[15] |
HAIMOVICH A M, BLUM R S, and CIMINI L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116–129. doi: 10.1109/MSP.2008.4408448
|
[16] |
WANG Wenqin. Large-area remote sensing in high-altitude high-speed platform using MIMO SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(5): 2146–2158. doi: 10.1109/JSTARS.2012.2236301
|
[17] |
武其松, 井伟, 邢孟道, 等. MIMO-SAR大测绘带成像[J]. 电子与信息学报, 2009, 31(4): 772–775. doi: 10.3724/SP.J.1146.2007.01959
WU Qisong, JING Wei, XING Mengdao, et al. Wide swath imaging with MIMO-SAR[J]. Journal of Electronics &Information Technology, 2009, 31(4): 772–775. doi: 10.3724/SP.J.1146.2007.01959
|
[18] |
周伟, 刘永祥, 黎湘, 等. MIMO-SAR技术发展概况及应用浅析[J]. 雷达学报, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074
ZHOU Wei, LIU Yongxiang, LI Xiang, et al. Brief analysis on the development and application of multi-input multi-output synthetic aperture radar[J]. Journal of Radars, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074
|
[19] |
王怀军, 许红波, 陆珉, 等. MIMO雷达技术及其应用分析[J]. 雷达科学与技术, 2009, 7(4): 245–249. doi: 10.3969/j.issn.1672-2337.2009.04.001
WANG Huaijun, XU Hongbo, LU Min, et al. Technology and application analysis of MIMO radar[J]. Radar Science and Technology, 2009, 7(4): 245–249. doi: 10.3969/j.issn.1672-2337.2009.04.001
|
[20] |
HAYKIN S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30–40. doi: 10.1109/MSP.2006.1593335
|
[21] |
ADVE R, HALE T, and WICKS M. Knowledge based adaptive processing for ground moving target indication[J]. Digital Signal Processing, 2007, 17(2): 495–514. doi: 10.1016/j.dsp.2005.06.005
|
[22] |
GOODMAN N A, VENKATA P R, and NEIFELD M A. Adaptive waveform design and sequential hypothesis testing for target recognition with active sensors[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 105–113. doi: 10.1109/JSTSP.2007.897053
|
[23] |
黎湘, 范梅梅. 认知雷达及其关键技术研究进展[J]. 电子学报, 2012, 40(9): 1863–1870. doi: 10.3969/j.issn.0372-2112.2012.09.025
LI Xiang and FAN Meimei. Research advance on cognitive radar and its key technology[J]. Acta Electronica Sinica, 2012, 40(9): 1863–1870. doi: 10.3969/j.issn.0372-2112.2012.09.025
|
[24] |
金林. 智能化认知雷达综述[J]. 现代雷达, 2013, 35(11): 6–11. doi: 10.3969/j.issn.1004-7859.2013.11.002
JIN Lin. Overview of cognitive radar with intelligence[J]. Modern Radar, 2013, 35(11): 6–11. doi: 10.3969/j.issn.1004-7859.2013.11.002
|
[25] |
王岩飞, 刘畅, 詹学丽, 等. 无人机载合成孔径雷达系统技术与应用[J]. 雷达学报, 2016, 5(4): 333–349. doi: 10.12000/JR16089
WANG Yanfei, LIU Chang, ZHAN Xueli, et al. Technology and applications of UAV synthetic aperture radar system[J]. Journal of Radars, 2016, 5(4): 333–349. doi: 10.12000/JR16089
|
[26] |
META A, DE WIT J J M, and HOOGEBOOM P. Development of a high resolution airborne millimeter wave FM-CW SAR[C]. 2004 First European Radar Conference, Amsterdam, The Netherlands, 2004: 209–212.
|
[27] |
META A and HOOGEBOOM P. Development of signal processing algorithms for high resolution airborne millimeter wave FMCW SAR[C]. Proceedings of 2005 IEEE International Radar Conference, Arlington, VA, USA, 2005: 326–331.
|
[28] |
YAMAGUCHI Y, MITSUMOTO M, SENGOKU M, et al. Synthetic aperture FM-CW radar applied to the detection of objects buried in snowpack[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1): 11–18. doi: 10.1109/36.285184
|
[29] |
CHARVAT G L and KEMPEL L C. Synthetic aperture radar imaging using a unique approach to frequency-modulated continuous-wave radar design[J]. IEEE Antennas and Propagation Magazine, 2006, 48(1): 171–177. doi: 10.1109/MAP.2006.1645606
|
[30] |
蔡永俊, 张祥坤, 姜景山. 毫米波FMCW SAR系统设计与成像研究[J]. 现代雷达, 2016, 38(2): 1–5. doi: 10.16592/j.cnki.1004-7859.2016.02.001
CAI Yongjun, ZHANG Xiangkun, and JIANG Jingshan. A study on system design and imaging of millimeter wave FMCW SAR[J]. Modern Radar, 2016, 38(2): 1–5. doi: 10.16592/j.cnki.1004-7859.2016.02.001
|
[31] |
耿淑敏, 江志红, 程翥, 等. FM-CW SAR距离-多普勒成像算法研究[J]. 电子与信息学报, 2007, 29(10): 2346–2349. doi: 10.3724/SP.J.1146.2006.00415
GENG Shumin, JIANG Zhihong, CHENG Zhu, et al. Study on imaging algorithm of FM-CW SAR[J]. Journal of Electronics &Information Technology, 2007, 29(10): 2346–2349. doi: 10.3724/SP.J.1146.2006.00415
|
[32] |
KHAN R H and MITCHELL D K. Waveform analysis for high-frequency FMICW radar[J]. IEE Proceedings F Radar and Signal Processing, 1991, 138(5): 411–419. doi: 10.1049/ip-f-2.1991.0054
|
[33] |
朱天林, 金胜, 王海波. 准连续波体制雷达应用研究[J]. 现代雷达, 2012, 34(7): 1–4. doi: 10.3969/j.issn.1004-7859.2012.07.001
ZHU Tianlin, JIN Sheng, and WANG Haibo. Application on quasi-continuous wave radar[J]. Modern Radar, 2012, 34(7): 1–4. doi: 10.3969/j.issn.1004-7859.2012.07.001
|
[34] |
王岩飞, 刘中梅. SAR分布目标多视图像分辨特性研究[J]. 电子与信息学报, 2017, 39(10): 2294–2301. doi: 10.11999/JEIT170118
WANG Yanfei and LIU Zhongmei. Study on distributed targets resolution of multilook SAR image[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2294–2301. doi: 10.11999/JEIT170118
|
[35] |
CANTALLOUBE H and DUBOIS-FERNANDEZ P. Airborne X-band SAR imaging with 10 cm resolution: Technical challenge and preliminary results[J]. IEE Proceedings - Radar, Sonar and Navigation, 2006, 153(2): 163–176. doi: 10.1049/ip-rsn:20045097
|
[36] |
REIGBER A, SCHEIBER R, JAGER M, et al. Very-high-resolution airborne synthetic aperture radar imaging: signal processing and applications[J]. Proceedings of the IEEE, 2013, 101(3): 759–783. doi: 10.1109/JPROC.2012.2220511
|
[37] |
ENDER J H G and BRENNER A R. PAMIR — a wideband phased array SAR/MTI system[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 165–172. doi: 10.1049/ip-rsn:20030445
|
[38] |
BRENNER A R. Ultra-high resolution airborne SAR imaging of vegetation and man-made objects based on 40% relative bandwidth in X-band[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 7397–7400. doi: 10.1109/IGARSS.2012.6351920.
|
[39] |
BRENNER A R. Improved radar imaging by centimeter resolution capabilities of the airborne SAR sensor PAMIR[C]. Proceedings of the 2013 14th International Radar Symposium, Dresden, Germany, 2013: 218–223.
|
[40] |
TSUNODA S I, PACE F, STENCE J, et al. Lynx: A high-resolution synthetic aperture radar[C]. Proceedings of SPIE 3704, Radar Sensor Technology IV, Orlando, FL, 1999: 20–27.
|
[41] |
王岩飞, 刘畅, 李和平, 等. 基于多通道合成的优于0.1 m分辨率的机载SAR系统[J]. 电子与信息学报, 2013, 35(1): 29–35. doi: 10.3724/SP.J.1146.2011.01370
WANG Yanfei, LIU Chang, LI Heping, et al. An airborne SAR with 0.1 m resolution using multi-channel synthetic bandwidth[J]. Journal of Electronics &Information Technology, 2013, 35(1): 29–35. doi: 10.3724/SP.J.1146.2011.01370
|
[42] |
CURRIE A and BROWN M A. Wide-swath SAR[J]. IEE Proceedings F - Radar and Signal Processing, 1992, 139(2): 122–135. doi: 10.1049/ip-f-2.1992.0016
|
[43] |
CALLAGHAN G D and LONGSTAFF I D. Wide-swath space-borne SAR using a quad-element array[J]. IEE Proceedings-Radar, Sonar and Navigation, 1999, 146(3): 159–165. doi: 10.1049/ip-rsn:19990126
|
[44] |
SUESS M, GRAFMUELLER B, and ZAHN R. A novel high resolution, wide swath SAR system[C]. Proceedings of Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 2001, 3: 1013–1015.
|
[45] |
宋岳鹏, 杨汝良. 应用多收发孔径实现高分辨率宽测绘带的合成孔径雷达研究[J]. 电子与信息学报, 2007, 29(9): 2110–2113. doi: 10.3724/SP.J.1146.2006.00140
SONG Yuepeng and YANG Ruliang. Study on high resolution, wide swath synthetic aperture radar using multiple transmit-receive apertures[J]. Journal of Electronics &Information Technology, 2007, 29(9): 2110–2113. doi: 10.3724/SP.J.1146.2006.00140
|
[46] |
郭振永, 袁新哲, 张平. 一种多通道SAR高分辨率宽测绘带成像算法[J]. 电子与信息学报, 2008, 30(2): 310–313. doi: 10.3724/SP.J.1146.2006.00986
GUO Zhenyong, YUAN Xinzhe, and ZHANG Ping. An algorithm of multichannel SAR high-resolution and wide-swath imaging[J]. Journal of Electronics &Information Technology, 2008, 30(2): 310–313. doi: 10.3724/SP.J.1146.2006.00986
|
[47] |
BORDONI F, YOUNIS M, and KRIEGER G. Ambiguity suppression by azimuth phase coding in multichannel SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 617–629. doi: 10.1109/TGRS.2011.2161672
|
[48] |
DALL J and KUSK A. Azimuth phase coding for range ambiguity suppression in SAR[C]. Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 2004, 3: 1734–1737. doi: 10.1109/IGARSS.2004.1370667.
|
[49] |
曾祥能, 刘宪勋, 白洁, 等. 基于方位向多波束-多相位中心的星载SAR多维波形编码技术研究[J]. 电子学报, 2013, 41(9): 1863–1868. doi: 10.3969/j.issn.0372-2112.2013.09.032
ZENG Xiangneng, LIU Xianxun, BAI Jie, et al. Study of space borne SAR multidimensional waveform encoding technology based on azimuth multi-beams multi-phase centers[J]. Acta Electronica Sinica, 2013, 41(9): 1863–1868. doi: 10.3969/j.issn.0372-2112.2013.09.032
|