Citation: | ZHANG Shunsheng, CHEN Shuang, CHEN Xiaoying, et al. Active deception jamming recognition method in multimodal radar based on small samples[J]. Journal of Radars, 2023, 12(4): 882–891. doi: 10.12000/JR23104 |
[1] |
KWAK C M. Application of DRFM in ECM for pulse type radar[C]. 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves, Busan, Korea (South), 2009: 1–2.
|
[2] |
ZHANG Haoyu, YU Lei, CHEN Yushi, et al. Fast complex-valued CNN for radar jamming signal recognition[J]. Remote Sensing, 2021, 13(15): 2867. doi: 10.3390/rs13152867
|
[3] |
陈思伟, 崔兴超, 李铭典, 等. 基于深度CNN模型的SAR图像有源干扰类型识别方法[J]. 雷达学报, 2022, 11(5): 897–908. doi: 10.12000/JR22143
CHEN Siwei, CUI Xingchao, LI Mingdian, et al. SAR image active jamming type recognition based on deep CNN model[J]. Journal of Radars, 2022, 11(5): 897–908. doi: 10.12000/JR22143
|
[4] |
MENDOZA A, SOTO A, and FLORES B C. Classification of radar jammer FM signals using a neural network[C]. SPIE 10188, Radar Sensor Technology XXI, Anaheim, USA, 2017: 101881G.
|
[5] |
WU Zhilu, ZHAO Yanlong, YIN Zhengdong, et al. Jamming signals classification using convolutional neural network[C]. 2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 2017: 62–67.
|
[6] |
ZHAO Qingyuan, LIU Yang, CAI Linjie, et al. Research on electronic jamming identification based on CNN[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–5.
|
[7] |
LIU Qiang and ZHANG Wei. Deep learning and recognition of radar jamming based on CNN[C]. 2019 12th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 2019: 208–212.
|
[8] |
HOWARD J and RUDER S. Universal language model fine-tuning for text classification[C]. The 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 2018: 328–339.
|
[9] |
DING Kaize, WANG Jianling, LI Jundong, et al. Graph prototypical networks for few-shot learning on attributed networks[C]. The 29th ACM International Conference on Information & Knowledge Management, Online, 2020: 295–304.
|
[10] |
CHOPRA S, HADSELL R, and LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, USA, 2005: 539–546.
|
[11] |
SHAO Guangqing, CHEN Yushi, and WEI Yinsheng. Convolutional neural network-based radar jamming signal classification with sufficient and limited samples[J]. IEEE Access, 2020, 8: 80588–80598. doi: 10.1109/ACCESS.2020.2990629
|
[12] |
陈泽伟, 严远鹏. 基于改进DCGAN的毫米波雷达相互干扰时频图像生成研究——以生成样本对CNN干扰抑制模型性能影响为例[J]. 现代信息科技, 2022, 6(13): 55–61. doi: 10.19850/j.cnki.2096-4706.2022.013.014
CHEN Zewei and YAN Yuanpeng. Research on generation of MMW radar mutual interference time-frequency image based on improved DCGAN—a case of performance effect of the generated samples on the CNN interference suppression model[J]. Modern Information Technology, 2022, 6(13): 55–61. doi: 10.19850/j.cnki.2096-4706.2022.013.014
|
[13] |
KOCH G, ZEMEL R, and SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 1–8.
|
[14] |
SNELL J, SWERSKY K, and ZEMEL R S. Prototypical networks for few-shot learning[C]. 31st Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 4080–4090.
|
[15] |
LU Yunlong and LI Siyu. CFAR detection of DRFM deception jamming based on singular spectrum analysis[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China, 2017: 1–6.
|
[16] |
定少浒, 汤建龙. 基于SSA的DRFM速度欺骗干扰识别[J]. 雷达科学与技术, 2020, 18(1): 44–50. doi: 10.3969/j.issn.1672-2337.2020.01.008
DING Shaohu and TANG Jianlong. DRFM velocity deception jamming recognition based on singular spectrum analysis[J]. Radar Science and Technology, 2020, 18(1): 44–50. doi: 10.3969/j.issn.1672-2337.2020.01.008
|
[17] |
LV Qinzhe, QUAN Yinghui, FENG Wei, et al. Radar deception jamming recognition based on weighted ensemble CNN with transfer learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5107511. doi: 10.1109/TGRS.2021.3129645
|
[18] |
JAMIL N, SEMBOK T M T, and BAKAR Z. A. Noise removal and enhancement of binary images using morphological operations[C]. 2008 International Symposium on Information Technology, Kuala Lumpur, Malaysia, 2008: 1–6.
|
[19] |
XI Bobo, LI Jiaojiao, LI Yunsong, et al. Deep prototypical networks with hybrid residual attention for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3683–3700. doi: 10.1109/JSTARS.2020.3004973
|
[20] |
利强, 张伟, 金秋园, 等. 基于知识原型网络的小样本多功能雷达工作模式识别[J]. 电子学报, 2022, 50(6): 1344–1350. doi: 10.12263/DZXB.20210932
LI Qiang, ZHANG Wei, JIN Qiuyuan, et al. Multi-function radar working mode recognition with few samples based on knowledge embedded prototype network[J]. Acta Electronica Sinica, 2022, 50(6): 1344–1350. doi: 10.12263/DZXB.20210932
|
[21] |
GAO Meng, LI Hongtao, JIAO Bixuan, et al. Simulation research on classification and identification of typical active jamming against LFM radar[C]. Proceedings of SPIE 11384 Eleventh International Conference on Signal Processing Systems, Nanjing, China, 2019: 113840T.
|
[22] |
LAKE B M, SALAKHUTDINOV R, and TENENBAUM J B. The Omniglot challenge: A 3-year progress report[J]. Current Opinion in Behavioral Sciences, 2019, 29: 97–104. doi: 10.1016/j.cobeha.2019.04.007
|
[23] |
WANG Jingyi, DONG Wenhao, and SONG Zhiyong. Radar active jamming recognition based on time-frequency image classification[C]. 2021 5th International Conference on Electronic Information Technology and Computer Engineering, Xiamen, China, 2021: 449–454.
|
[24] |
TIAN Xinyi, CHEN Baixiao, and ZHANG Zhaoming. Multiresolution jamming recognition with few-shot learning[C]. 2021 CIE International Conference on Radar, Haikou, China, 2021: 2267–2271.
|
[25] |
梁先明. 一种优化孪生网络的小样本辐射源个体识别方法[J]. 电讯技术, 2022, 62(6): 695–701. doi: 10.3969/j.issn.1001-893x.2022.06.001
LIANG Xianming. An emitter individual identification method for small samples based on optimized siamese networks[J]. Telecommunication Engineering, 2022, 62(6): 695–701. doi: 10.3969/j.issn.1001-893x.2022.06.001
|
[26] |
GU Jiuxiang, WANG Zhenhua, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354–377. doi: 10.1016/j.patcog.2017.10.013
|