Wang Song, Zhang Fubo, Chen Longyong, Liang Xingdong. Array-interferometric Synthetic Aperture Radar Point Cloud Filtering Based on Spatial Clustering Seed Growth Algorithm[J]. Journal of Radars, 2018, 7(3): 355-363. doi: 10.12000/JR18006
Citation: GUAN Jian. Summary of marine radar target characteristics[J]. Journal of Radars, 2020, 9(4): 674–683. doi: 10.12000/JR20114

Summary of Marine Radar Target Characteristics

DOI: 10.12000/JR20114
Funds:  The National Natural Science Foundation of China (61871391, 61871392, 61931021), The Key Research and Development Program of Shandong Province (2019JZZY010415)
More Information
  • Corresponding author: GUAN Jian, guanjian_68@163.com
  • Received Date: 2020-08-06
  • Rev Recd Date: 2020-08-25
  • Available Online: 2020-08-27
  • Publish Date: 2020-08-28
  • Regarding the target characteristics in marine radar detection, this paper introduces classic radar target characteristics and models, and the main problems associated with the measurement and computation of these target characteristics. From three perspectives, i.e., the target, environment, and sensor, we discuss the target characteristic that have attracted much attention in the field of marine target detection. We discuss the diversity of marine target characteristics, the variety and complexity of the marine environment, coupling effects between the target and the environment, and the main requirements of the typical marine radar in target detection applications. The techniques used in the measurements and computation of target characteristic are also introduced. We propose a multidimensional representation of the target characteristics and briefly discuss its applications.

     

  • [1]
    林春生, 龚沈光. 舰船物理场[M]. 北京: 兵器工业出版社, 2007.

    LIN Chunsheng and GONG Shenguang. Ship’s Physical Field[M]. Beijing: Ordnance Industry Press, 2007.
    [2]
    KNOTT E F. Radar Cross Section[M]. Dedham: Artech House, 1985.
    [3]
    MARCUM J. A statistical theory of target detection by pulsed radar[J]. IRE Transactions on Information Theory, 1960, 6(2): 59–267. doi: 10.1109/TIT.1960.1057560
    [4]
    SWERLING P. Probability of detection for fluctuating targets[J]. IRE Transactions on Information Theory, 1960, 6(2): 269–308. doi: 10.1109/TIT.1960.1057561
    [5]
    黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005.

    HUANG Peikang, YIN Hongcheng, and XU Xiaojian. Radar Target Characteristics[M]. Beijing: Publishing House of Electronics Industry, 2005.
    [6]
    庄钊文, 袁乃昌, 莫锦军, 等. 军用目标雷达散射截面预估与测量[M]. 北京: 科学出版社, 2007.

    ZHUANG Zhaowen, YUAN Naichang, MO Jinjun, et al. Estimation and Measurement of Radar Cross Section Area of Military Targets[M]. Beijing: Science Press, 2007.
    [7]
    陈唯实, 李敬. 雷达探鸟技术发展与应用综述[J]. 现代雷达, 2017, 39(2): 7–17.

    CHEN Weishi and LI Jing. Review on development and applications of avian radar technology[J]. Modern Radar, 2017, 39(2): 7–17.
    [8]
    杨屹, 程虹, 王青. 高耐波隐身船型设计[J]. 舰船科学技术, 2010, 32(9): 3–7, 15. doi: 10.3404/j.issn.1672-7649.2010.09.001

    YANG Yi, CHENG Hong, and WANG Qing. Research on high sea-keeping and stealth of naval ships[J]. Ship Science and Technology, 2010, 32(9): 3–7, 15. doi: 10.3404/j.issn.1672-7649.2010.09.001
    [9]
    梅中磊, 张黎, 崔铁军. 电磁超材料研究进展[J]. 科技导报, 2016, 34(18): 27–39.

    MEI Zhonglei, ZHANG Li, and CUI Tiejun. Recent advances on metamaterials[J]. Science &Technology Review, 2016, 34(18): 27–39.
    [10]
    王德纯. 雷达目标微观特性测量技术[J]. 中国电子科学研究院学报, 2007, 2(5): 439–444. doi: 10.3969/j.issn.1673-5692.2007.05.001

    WANG Dechun. Micro-characteristics measuring techniques for radar-target[J]. Journal of China Academy of Electronics and Information Technology, 2007, 2(5): 439–444. doi: 10.3969/j.issn.1673-5692.2007.05.001
    [11]
    CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21.
    [12]
    陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1): 123–134. doi: 10.3724/SP.J.1300.2013.20102

    CHEN Xiaolong, GUAN Jian, and HE You. Applications and prospect of micro-motion theory in the detection of sea surface target[J]. Journal of Radars, 2013, 2(1): 123–134. doi: 10.3724/SP.J.1300.2013.20102
    [13]
    文圣常, 余宙文. 海浪理论与计算原理[M]. 北京: 科学出版社, 1985.

    WEN Shengchang and YU Zhouwen. Sea Wave Theory and Calculation Principle[M]. Beijing: Science Press, 1985.
    [14]
    许小剑, 李晓飞, 刁桂杰, 等. 时变海面雷达目标散射现象学模型[M]. 北京: 国防工业出版社, 2013.

    XU Xiaojian, LI Xiaofei, DIAO Guijie, et al. Radar Phenomenological Models for Ships on Time-Evolving Sea Surface[M]. Beijing: National Defense Industry Press, 2013.
    [15]
    张金鹏, 张玉石, 李清亮, 等. 基于不同散射机制特征的海杂波时变多普勒谱模型[J]. 物理学报, 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612

    ZHANG Jinpeng, ZHANG Yushi, LI Qingliang, et al. A time-varying Doppler spectrum model of radar sea clutter based on different scattering mechanisms[J]. Acta Physica Sinica, 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612
    [16]
    丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8(3): 281–302. doi: 10.12000/JR19006

    DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006
    [17]
    刘宁波, 董云龙, 王国庆, 等. X波段雷达对海探测试验与数据获取[J]. 雷达学报, 2019, 8(5): 656–667. doi: 10.12000/JR19089

    LIU Ningbo, DONG Yunlong, WANG Guoqing, et al. Sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2019, 8(5): 656–667. doi: 10.12000/JR19089
    [18]
    黄勇, 陈小龙, 关键. 实测海尖峰特性分析及抑制方法[J]. 雷达学报, 2015, 4(3): 334–342. doi: 10.12000/JR14108

    HUANG Yong, CHEN Xiaolong, and GUAN Jian. Property analysis and suppression method of real measured sea spikes[J]. Journal of Radars, 2015, 4(3): 334–342. doi: 10.12000/JR14108
    [19]
    LONG M W. Radar Reflectivity of Land and Sea[M]. 3rd ed. Boston: Artech House, 2001.
    [20]
    察豪, 史建伟, 张萍. 蒸发波导条件下雷达探测距离的估计方法[J]. 现代雷达, 2006, 28(9): 5–7. doi: 10.3969/j.issn.1004-7859.2006.09.002

    CHA Hao, SHI Jianwei, and ZHANG Ping. Calculation of radar detection range in condition of evaporation duct[J]. Modern Radar, 2006, 28(9): 5–7. doi: 10.3969/j.issn.1004-7859.2006.09.002
    [21]
    李文兴, 卢长新, 宫建斌. 粗糙海面舰船目标RCS研究[J]. 雷达科学与技术, 2015, 13(5): 496–500. doi: 10.3969/j.issn.1672-2337.2015.05.009

    LI Wenxing, LU Changxin, and GONG Jianbin. Research on ship RCS based on rough sea[J]. Radar Science and Technology, 2015, 13(5): 496–500. doi: 10.3969/j.issn.1672-2337.2015.05.009
    [22]
    JAMIL K and BURKHOLDER R J. Radar scattering from a rolling target floating on a time-evolving rough sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3330–3337. doi: 10.1109/TGRS.2006.880631
    [23]
    徐丰, 金亚秋. 计算粗糙海面与大型舰船复合散射的双向解析射线追踪法[J]. 自然科学进展, 2008, 18(7): 814–825.

    XU Feng and JIN Yaqiu. Two way analytical ray tracing method for complex scattering from rough sea surface and large ship[J]. Progress in Natural Science, 2008, 18(7): 814–825.
    [24]
    DONG Chunzhu, WANG Chao, WEI Xiao, et al. EM scattering from complex targets above a slightly rough surface[C]. Progress in Electromagnetic Research Symposium, Beijing, China, 2007: 685–688.
    [25]
    许小剑, 姜丹, 李晓飞. 时变海面舰船目标动态雷达特征信号模型[J]. 系统工程与电子技术, 2011, 33(1): 42–47. doi: 10.3969/j.issn.1001-506X.2011.01.09

    XU Xiaojian, JIANG Dan, and LI Xiaofei. Modeling of dynamic radar signatures for ships on time-varying sea surface[J]. Systems Engineering and Electronics, 2011, 33(1): 42–47. doi: 10.3969/j.issn.1001-506X.2011.01.09
    [26]
    赵晔. 海面与舰船目标电磁散射的建模方法研究[D]. [博士论文], 西安电子科技大学, 2016.

    ZHAO Ye. Study on modeling method of EM scattering from sea surface and ship target[D]. [Ph. D. dissertation], Xidian University, 2018.
    [27]
    李健兵, 高航, 王涛, 等. 飞机尾流的散射特性与探测技术综述[J]. 雷达学报, 2017, 6(6): 660–672. doi: 10.12000/JR17068

    LI Jianbing, GAO Hang, WANG Tao, et al. A survey of the scattering characteristics and detection of aircraft wake vortices[J]. Journal of Radars, 2017, 6(6): 660–672. doi: 10.12000/JR17068
    [28]
    种劲松. 合成孔径雷达图像舰船目标检测算法与应用研究[D]. [博士论文], 中国科学院研究生院(电子学研究所), 2002.

    CHONG Jinsong. A study on the algorithm of ship target detection in SAR imagery and its applications[D]. [Ph. D. dissertation], Institute of Electrics, Chinese Academy of Sciences, 2002.
    [29]
    孙荣庆. 海面舰船尾迹电磁散射研究[D]. [博士论文], 西安电子科技大学, 2013.

    SUN Rongqing. Research on electromagnetic scattering from ship Weaks[D]. [Ph. D. dissertation], Xidian University, 2013.
    [30]
    张效慈, 张军. 潜艇内波波迹-航空猎潜的新对象[J]. 船舶力学, 2007, 11(4): 508–513. doi: 10.3969/j.issn.1007-7294.2007.04.003

    ZHANG Xiaoci and ZHANG Jun. Internal wave wake of submarine—A new target of aerial submarine hunting[J]. Journal of Ship Mechanics, 2007, 11(4): 508–513. doi: 10.3969/j.issn.1007-7294.2007.04.003
    [31]
    陈标, 朱海荣. 机载超低频雷达探测海洋内波[J]. 海洋技术学报, 2014, 33(1): 50–55.

    CHEN Biao and ZHU Hairong. The method of detecting ocean internal waves through airborne ultra low frequency radar[J]. Ocean Technology, 2014, 33(1): 50–55.
    [32]
    潘雪莉. 机载环视SAR海面特性和舰船目标检测算法研究[D]. [博士论文], 西安电子科技大学, 2018.

    PAN Xueli. Research on sea surface property and ship target detection method in airborne circular scanning SAR[D]. [Ph. D. dissertation], Xidian University, 2018.
    [33]
    何嘉懿. 天基预警雷达微弱动目标检测跟踪方法研究[D]. [博士论文], 西安电子科技大学, 2016.

    HE Jiayi. Detection and tracking of weak moving targets for space based warning radar[D]. [Ph. D. dissertation], Xidian University, 2016.
    [34]
    刘泽宇, 柳彬, 郭炜炜, 等. 高分三号NSC模式SAR图像舰船目标检测初探[J]. 雷达学报, 2017, 6(5): 473–482. doi: 10.12000/JR17059

    LIU Zeyu, LIU Bin, GUO Weiwei, et al. Ship detection in GF-3 NSC mode SAR images[J]. Journal of Radars, 2017, 6(5): 473–482. doi: 10.12000/JR17059
    [35]
    徐晋, 付启众, 陆鹏程, 等. 米波雷达对海面目标探测性能分析及验证[J]. 雷达科学与技术, 2012, 10(4): 376–379. doi: 10.3969/j.issn.1672-2337.2012.04.006

    XU Jin, FU Qizhong, LU Pengcheng, et al. Analysis and experiment verification of maritime target detection performance of meter-wave radar[J]. Radar Science and Technology, 2012, 10(4): 376–379. doi: 10.3969/j.issn.1672-2337.2012.04.006
    [36]
    杨松岩. 高频波段雷达目标特征提取与识别方法研究[D]. [博士论文], 哈尔滨工业大学, 2015.

    YANG Songyan. Research on high frequency band radar target features extraction and identification[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2015.
    [37]
    刘根旺, 张杰, 张晰, 等. 基于残差谱显著性区域提取的极化SAR船只检测[J]. 电波科学学报, 2019, 34(6): 751–760.

    LIU Genwang, ZHANG Jie, ZHANG Xi, et al. Ship detection based on visual saliency region extraction of spectral residual for Pol-SAR images[J]. Chinese Journal of Radio Science, 2019, 34(6): 751–760.
    [38]
    张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049

    ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049
    [39]
    王雪松, 杨勇. 海杂波与目标极化特性研究进展[J]. 电波科学学报, 2019, 34(6): 665–675.

    WANG Xuesong and YANG Yong. Overview on cognition of clutter and target polarization characteristics for maritime radar[J]. Chinese Journal of Radio Science, 2019, 34(6): 665–675.
    [40]
    王雪松, 陈思伟. 合成孔径雷达极化成像解译识别技术的进展与展望[J]. 雷达学报, 2020, 9(2): 259–276. doi: 10.12000/JR19109

    WANG Xuesong and CHEN Siwei. Polarimetric synthetic aperture radar interpretation and recognition: Advances and perspectives[J]. Journal of Radars, 2020, 9(2): 259–276. doi: 10.12000/JR19109
    [41]
    李尚生, 付哲泉, 于晶, 等. 基于极化特征的抗箔条干扰方法研究[J]. 雷达科学与技术, 2016, 14(5): 478–481. doi: 10.3969/j.issn.1672-2337.2016.05.005

    LI Shangsheng, FU Zhequan, YU Jing, et al. Research on anti-chaff jamming method based on radar echo signal[J]. Radar Science and Technology, 2016, 14(5): 478–481. doi: 10.3969/j.issn.1672-2337.2016.05.005
    [42]
    金林. 量子雷达研究进展[J]. 现代雷达, 2017, 39(3): 1–7.

    JIN Lin. Research progress of quantum radar[J]. Modern Radar, 2017, 39(3): 1–7.
    [43]
    潘时龙, 张亚梅. 微波光子雷达及关键技术[J]. 科技导报, 2017, 35(20): 36–52.

    PAN Shilong and ZHANG Yamei. Microwave photonic radar and key technologies[J]. Science &Technology Review, 2017, 35(20): 36–52.
    [44]
    王宏强, 邓彬, 秦玉亮. 太赫兹雷达技术[J]. 雷达学报, 2018, 7(1): 1–21. doi: 10.12000/JR17107

    WANG Hongqiang, DENG Bin, and QIN Yuliang. Review of terahertz radar technology[J]. Journal of Radars, 2018, 7(1): 1–21. doi: 10.12000/JR17107
    [45]
    郭桂荣, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013
    [46]
    诸四海. 在强海杂波背景下的潜望镜检测[J]. 现代雷达, 2000, 22(4): 43–47. doi: 10.3969/j.issn.1004-7859.2000.04.009

    ZHU Sihai. The periscope detection against the background of strong sea clutters[J]. Modern Radar, 2000, 22(4): 43–47. doi: 10.3969/j.issn.1004-7859.2000.04.009
    [47]
    于连庆, 孙斌, 沈学勇, 等. 国外潜望镜探测雷达发展与思考[J]. 现代雷达, 2015, 37(4): 10–13. doi: 10.3969/j.issn.1004-7859.2015.04.003

    YU Lianqing, SUN Bin, SHEN Xueyong, et al. Development and considerations of overseas periscope detection radar[J]. Modern Radar, 2015, 37(4): 10–13. doi: 10.3969/j.issn.1004-7859.2015.04.003
    [48]
    于录, 李瑱. 目标特性对反舰导弹捕捉概率的影响[J]. 战术导弹技术, 2010, (3): 44–47.

    YU Lu and LI Zhen. Influence of target characteristics on the acquiring probability of anti-ship missile[J]. Tactical Missile Technology, 2010(3): 44–47.
    [49]
    卫鑫, 姜宁. 冲淡干扰在单舰反导作战中的作战运用[J]. 舰船电子工程, 2018, 38(2): 17–20. doi: 10.3969/j.issn.1672-9730.2018.02.005

    WEI Xin and JIANG Ning. Tactics usage of dilution jamming in single antimissile operation[J]. Ship Electronic Engineering, 2018, 38(2): 17–20. doi: 10.3969/j.issn.1672-9730.2018.02.005
    [50]
    张俊, 胡生亮, 杨庆, 等. 基于RCS幅值特性相似度的浮空式角反射体布放态势寻优[J]. 海军工程大学学报, 2019, 31(2): 32–36. doi: 10.7495/j.issn.1009-3486.2019.02.006

    ZHANG Jun, HU Shengliang, YANG Qing, et al. Optimization of position situation of air-floating corner reflectors based on similarity of RCS amplitude characteristic[J]. Journal of Naval University of Engineering, 2019, 31(2): 32–36. doi: 10.7495/j.issn.1009-3486.2019.02.006
    [51]
    秦剑冬, 吴晓锋, 程志锋, 等. 舰空导弹和箔条冲淡干扰电磁兼容模型与仿真[J]. 海军工程大学学报, 2017, 29(3): 92–97.

    QIN Jiandong, WU Xiaofeng, CHENG Zhifeng, et al. Model and simulation of electromagnetic compatibility of SAM and decoy dilution jamming[J]. Journal of Naval University of Engineering, 2017, 29(3): 92–97.
    [52]
    姚远, 肖舒文, 陈晓盼. 国外雷达目标特性测试技术发展研究[J]. 制导与引信, 2017, 38(4): 11–15, 22. doi: 10.3969/j.issn.1671-0576.2017.04.003

    YAO Yuan, XIAO Shuwen, and CHEN Xiaopan. Research on the development of foreign radar target properties measurements[J]. Guidance &Fuze, 2017, 38(4): 11–15, 22. doi: 10.3969/j.issn.1671-0576.2017.04.003
    [53]
    林刚, 许家栋. 目标RCS动态数据的分布特征研究[J]. 现代雷达, 2006, 28(2): 18–20, 39. doi: 10.3969/j.issn.1004-7859.2006.02.006

    LIN Gang and XU Jiadong. Study of the statistical characterization of Targets’ RCS dynamic data[J]. Modern Radar, 2006, 28(2): 18–20, 39. doi: 10.3969/j.issn.1004-7859.2006.02.006
    [54]
    “电磁计算”专刊编委会. 电磁计算十大问题[J]. 电波科学学报, 2020, 35(1): 3–12.

    The Editorial Board of Special Issue for "Computational Electromagnetics". Ten problems in computational electromagnetics[J]. Chinese Journal of Radio Science, 2020, 35(1): 3–12.
    [55]
    郭立新, 张民, 吴振森. 随机粗糙面与目标复合电磁散射的基本理论和方法[M]. 北京: 科学出版社, 2014.

    GUO Lixin, ZHANG Min, and WU Zhensen. Basic Theory and Method of Electromagnetic Scattering from Random Rough Surface and Target[M]. Beijing: Science Press, 2014.
    [56]
    刘宁波, 关键, 宋杰, 等. 分形理论在目标检测中的应用[J]. 现代雷达, 2012, 34(2): 12–18. doi: 10.3969/j.issn.1004-7859.2012.02.004

    LIU Ningbo, GUAN Jian, SONG Jie, et al. Application of target detection based on fractal theories[J]. Modern Radar, 2012, 34(2): 12–18. doi: 10.3969/j.issn.1004-7859.2012.02.004
    [57]
    SCHARF L L and FRIEDLANDER B. Matched subspace detectors[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 2146–2157. doi: 10.1109/78.301849
    [58]
    关键, 张彦飞, 李彬玉, 等. 雷达非合作目标恒虚警检测和分类一体化方案[J]. 光电工程, 2006, 33(7): 1–4, 73. doi: 10.3969/j.issn.1003-501X.2006.07.001

    GUAN Jian, ZHANG Yanfei, LI Binyu, et al. Joint CFAR detection and classification scheme for radarnon-cooperative target recognition[J]. Opto-Electronic Engineering, 2006, 33(7): 1–4, 73. doi: 10.3969/j.issn.1003-501X.2006.07.001
  • Relative Articles

    [1]ZHOU Tao, JIN Guodong, LU Pingping, ZHU Daiyin. A Phase Synchronization Method for Miniature Multistatic FMCW SAR[J]. Journal of Radars. doi: 10.12000/JR24198
    [2]BAI Zechao, WANG Yanping, WANG Zhenhai, HU Jun, LI Yang, LIN Yun. A Non-homogenous Atmospheric Compensation Method for Deformation Monitoring of Wide-field Ground-based SAR[J]. Journal of Radars, 2023, 12(1): 53-63. doi: 10.12000/JR22120
    [3]WANG Xinhai, WANG Chaoyu, ZHANG Ning, CHEN Wei. Phase-only Method for Designing a Unimodular Radar Waveform with Low ISL[J]. Journal of Radars, 2022, 11(2): 255-263. doi: 10.12000/JR21137
    [4]QU Haiyou, CHENG Di, CHEN Chang, CHEN Weidong. High-resolution Sparse Self-calibration Imaging for Vortex Radar with Phase Error[J]. Journal of Radars, 2021, 10(5): 699-717. doi: 10.12000/JR21094
    [5]SHI Tianyue, LIU Huixin, LIU Yanqi, MAO Xinhua. Bistatic Synthetic Aperture Radar Two-dimensional Autofocus Approach Based on Prior Knowledge on Phase Structure[J]. Journal of Radars, 2020, 9(6): 1045-1055. doi: 10.12000/JR20048
    [6]HUANG Datong, XING Shiqi, LIU Yemin, LI Yongzhen, XIAO Shunping. Fake SAR Signal Generation Method Based on Noise Convolution Modulation[J]. Journal of Radars, 2020, 9(5): 898-907. doi: 10.12000/JR20094
    [7]Xu Zhihuo, Shi Quan, Sun Ling. Novel Orthogonal Random Phase-Coded Pulsed Radar for Automotive Application[J]. Journal of Radars, 2018, 7(3): 364-375. doi: 10.12000/JR17083
    [8]Fan Huaitao, Zhang Zhimin, Li Ning. Channel Phase Mismatch Calibration for Multichannel in Azimuth SAR Imaging Based on Eigen-structure Method[J]. Journal of Radars, 2018, 7(3): 346-354. doi: 10.12000/JR17012
    [9]Wu Yufeng, Ye Shaohua, Feng Dazheng. Intra-pulse Spotlight SAR Imaging Method Based on Azimuth Phase Coding[J]. Journal of Radars, 2018, 7(4): 437-445. doi: 10.12000/JR17114
    [10]Guo Zhen-yu, Lin Yun, Hong Wen. A Focusing Algorithm for Circular SAR Based on Phase Error Estimation in Image Domain[J]. Journal of Radars, 2015, 4(6): 681-688. doi: 10.12000/JR15046
    [11]Lin Xue, Li Zeng-xi, Li Fang-fang, Hu Dong-hui, Ding Chi-biao. An Adaptive Iterated Nonlocal Interferometry Filtering Method[J]. Journal of Radars, 2014, 3(2): 166-175. doi: 10.3724/SP.J.1300.2014.13123
    [12]Li Wan-chun, Huang Cheng-feng. Optimal Trajectory Analysis for the Receiver of Passive Location Systems Using Direction Of Arrival and Doppler Measurements[J]. Journal of Radars, 2014, 3(6): 660-665. doi: 10.12000/JR14118
    [13]Du Jian-bo, Li Dao-jing, Ma Meng. Performance Analysis and Image Processing of Phase-modulated Signal on Airborne Synthetic Aperture Ladar[J]. Journal of Radars, 2014, 3(1): 111-118. doi: 10.3724/SP.J.1300.2014.13094
    [14]Chen Zeng-ping, Zhang Wei-cheng, Lin Qian-qiang. A Novel Phase Compensation Method for ISAR Imaging in Wideband Radar (in English)[J]. Journal of Radars, 2013, 2(1): 23-29. doi: 10.3724/SP.J.1300.2013.13023
    [15]Yan Zhou-jie, Wang Hua-bing, Chen Yuan-zheng, Zhao Yan-li. Self-cross Phase Calibration Method of Oversized Front Distributed Phased Array Radar[J]. Journal of Radars, 2013, 2(4): 439-444. doi: 10.3724/SP.J.1300.2013.13054
    [16]Zeng Tao, Yin Pi-lei, Yang Xiao-peng, Fan Hua-jian. Time and Phase Synchronization for Distributed Aperture Coherent Radar[J]. Journal of Radars, 2013, 2(1): 105-110. doi: 10.3724/SP.J.1300.2012.20104
    [17]Wang Ling, Li Guo-lin, Xie Xin, Qi Shuai. Joint 2-D DOA and Noncircularity Phase Estimation Method[J]. Journal of Radars, 2012, 1(1): 43-49. doi: 10.3724/SP.J.1300.2013.20014
    [18]Li Fang-fang, Zhan Yi, Hu Dong-hui, Ding Chi-biao. A Fast Method for InSAR Phase Unwrapping Based on Quality Guide[J]. Journal of Radars, 2012, 1(2): 196-202. doi: 10.3724/SP.J.1300.2012.20023
    [19]Xie Dong-dong, Wu Xia-yi, Yu Wei-dong. The Phase Stability Measure Method for Transmitting and Receiving Channels of Space-borne SAR[J]. Journal of Radars, 2012, 1(1): 96-99. doi: 10.3724/SP.J.1300.2013.20009
    [20]Li Gao-sheng, Jia Lei, Ming Yong-jin, Cao Qun-sheng. Study of Power Coefficient and Insertion Phase Shift for Organic Magnetic Slab[J]. Journal of Radars, 2012, 1(3): 277-282. doi: 10.3724/SP.J.1300.2012.20030
  • Cited by

    Periodical cited type(4)

    1. 周鹏,刘伟,李鹏飞,刘战合,赵青,阎泽恒. 基于广义似然比不规则建筑物层析SAR成像方法. 物联网技术. 2022(06): 84-88+92 .
    2. 齐小祥,李敏,朱颖,宋雨,杜卫东. 基于边缘检测的SAR图像自适应区域分割. 计算机工程与应用. 2021(22): 232-240 .
    3. 秦斐,梁兴东,张福博,陈龙永,乔明,李焱磊,万阳良. 基于机器学习的阵列层析SAR建筑物目标提取方法. 信号处理. 2019(02): 176-186 .
    4. 李家宝. 基于多维测绘手段的城乡建设用地增减挂钩机制分析. 科技视界. 2018(22): 178-179 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(5335) PDF downloads(763) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint