Turn off MathJax
Article Contents
ZHOU Tao, JIN Guodong, LU Pingping, et al. A phase synchronization method for miniature multistatic FMCW SAR[J]. Journal of Radars, in press. doi: 10.12000/JR24198
Citation: ZHOU Tao, JIN Guodong, LU Pingping, et al. A phase synchronization method for miniature multistatic FMCW SAR[J]. Journal of Radars, in press. doi: 10.12000/JR24198

A Phase Synchronization Method for Miniature Multistatic FMCW SAR

DOI: 10.12000/JR24198
Funds:  The National Natural Science Foundation of China (62101248), The Natural Science Foundation of Jiangsu Province (BK20210282), The Guangdong Basic and Applied Basic Research Foundation (2020B1515120060), The Shenzhen Science and Technology Program (JCYJ20230807142000001), The Fundamental Research Funds for the Central Universities (NT2023008)
More Information
  • Corresponding author: JING Guodong, jinguodong@nuaa.edu.cn
  • Received Date: 2024-10-08
  • Rev Recd Date: 2024-11-11
  • Available Online: 2024-11-11
  • The miniature multistatic Synthetic Aperture Radar (SAR) system uses a flexible configuration of transceiver division compared with the miniature monostatic SAR system, thereby affording the advantages of multi-angle imaging. As the transceiver-separated SAR system uses mutually independent oscillator sources, phase synchronization is necessary for high-precision imaging of the miniature multistatic SAR. Although current research on phase synchronization schemes for bistatic SAR is relatively mature, these schemes are primarily based on the pulse SAR system. However, a paucity of research exists on phase synchronization for the miniature multistatic Frequency Modulated Continuous Wave (FMCW) SAR. In comparison with the pulse SAR, the FMCW SAR system lacks a temporal interval between the transmitted pulses. Consequently, some phase synchronization schemes developed for the pulse SAR system cannot be directly applied to the FMCW SAR system. To this end, this study proposes a novel phase synchronization method for the miniature multistatic FMCW SAR, effectively resolving the problem of the FMCW SAR. This method uses the generalized Short-Time Shift-Orthogonal (STSO) waveform as the phase synchronization signal of disparate radar platforms. The phase error between the radar platforms can be effectively extracted through pulse compression to realize phase synchronization. Compared with the conventional linear frequency-modulated waveform, after the generalized STSO waveform is pulsed by the same pulse compression function, the interference signal energy is concentrated away from the peak of the matching signal and the phase synchronization accuracy is enhanced. Furthermore, the proposed method is adapted to the characteristics of dechirp reception in FMCW miniature multistatic SAR systems, and ground and numerical simulation experiments verify that the proposed method has high synchronization accuracy.

     

  • loading
  • [1]
    CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995.
    [2]
    杨建宇. 双基地合成孔径雷达技术[J]. 电子科技大学学报, 2016, 45(4): 482–501. doi: 10.3969/j.issn.1001-0548.2016.04.001.

    YANG Jianyu. Bistatic synthetic aperture radar technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 482–501. doi: 10.3969/j.issn.1001-0548.2016.04.001.
    [3]
    武俊杰, 孙稚超, 杨建宇, 等. 基于GF-3照射的星机双基SAR成像及试验验证[J]. 雷达科学与技术, 2021, 19(3): 241–247. doi: 10.3969/j.issn.1672-2337.2021.03.002.

    WU Junjie, SUN Zhichao, YANG Jianyu, et al. Spaceborne-airborne bistatic SAR using GF-3 illumination—technology and experiment[J]. Radar Science and Technology, 2021, 19(3): 241–247. doi: 10.3969/j.issn.1672-2337.2021.03.002.
    [4]
    武俊杰, 孙稚超, 吕争, 等. 星源照射双/多基地SAR成像[J]. 雷达学报, 2023, 12(1): 13–35. doi: 10.12000/JR22213.

    WU Junjie, SUN Zhichao, LV Zheng, et al. Bi/multi-static synthetic aperture radar using spaceborne illuminator[J]. Journal of Radars, 2023, 12(1): 13–35. doi: 10.12000/JR22213.
    [5]
    邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008.

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008.
    [6]
    何友, 蔡复青, 唐小明, 等. 双/多基地SAR发展评述[J]. 雷达科学与技术, 2008, 6(1): 1–8. doi: 10.3969/j.issn.1672-2337.2008.01.001.

    HE You, CAI Fuqing, TANG Xiaoming, et al. An overview of the development of bistatic/multistatic SAR[J]. Radar Science and Technology, 2008, 6(1): 1–8. doi: 10.3969/j.issn.1672-2337.2008.01.001.
    [7]
    KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi: 10.1109/TGRS.2013.2263934.
    [8]
    杨建宇. 双基合成孔径雷达[M]. 北京: 国防工业出版社, 2017.

    YANG Jianyu. Bistatic Synthetic Aperture Radar[M]. Beijing: National Defense Industry Press, 2017.
    [9]
    王燕宇, 张长耀, 王金根. GEO星机双/多基地SAR系统同步探讨[J]. 雷达科学与技术, 2007, 5(5): 353–357, 364. doi: 10.3969/j.issn.1672-2337.2007.05.008.

    WANG Yanyu, ZHANG Changyao, and WANG Jin'gen. Study on synchronization of bistatic and multistatic SAR systems using GEO and airplane[J]. Radar Science and Technology, 2007, 5(5): 353–357, 364. doi: 10.3969/j.issn.1672-2337.2007.05.008.
    [10]
    DING Zegang, LI Zhe, WANG Yan, et al. Joint master-slave yaw steering for bistatic spaceborne SAR with an arbitrary configuration[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(8): 1426–1430. doi: 10.1109/LGRS.2020.3003334.
    [11]
    周鹏, 皮亦鸣. 一种新的星机双基地SAR空间同步方法[J]. 遥感技术与应用, 2008, 23(4): 440–445.

    ZHOU Peng and PI Yiming. A new approach for spatial synchronization in spaceborne/airborne hybrid Bi-static SAR[J]. Remote Sensing Technology and Application, 2008, 23(4): 440–445.
    [12]
    D’ERRICO M. Distributed Space Missions for Earth System Monitoring[M]. New York: Springer, 2012. doi: 10.1007/978-1-4614-4541-8.
    [13]
    遆晶晶, 索志勇, 王婷婷, 等. 导航卫星星地双基SAR时频同步误差估计方法[J]. 西安电子科技大学学报, 2023, 50(2): 42–53. doi: 10.19665/j.issn1001-2400.2023.02.005.

    TI Jingjing, SUO Zhiyong, WANG Tingting, et al. Time-frequency synchronization error estimation method for the satellite-to-ground bistatic SAR for a navigation satellite[J]. Journal of Xidian University, 2023, 50(2): 42–53. doi: 10.19665/j.issn1001-2400.2023.02.005.
    [14]
    JIN Guodong, LIU Kaiyu, LIU Dacheng, et al. An advanced phase synchronization scheme for LT-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1735–1746. doi: 10.1109/TGRS.2019.2948219.
    [15]
    POURRANJBAR A, BANIASADI M, ABBASFAR A, et al. A novel distributed algorithm for phase synchronization in unmanned aerial vehicles[J]. IEEE Communications Letters, 2020, 24(10): 2260–2264. doi: 10.1109/LCOMM.2020.3002859.
    [16]
    俞根苗, 方志红, 陈仁元, 等. Dechirp及频谱分析技术的目标分辨率分析[J]. 雷达与对抗, 2003, 23(1): 8–12. doi: 10.19341/j.cnki.issn.1009-0401.2003.01.003.

    YU Genmiao, FANG Zhihong, CHEN Renyuan, et al. Analysis of resolution of Dechirp and spectral analysis technology[J]. Radar & ECM, 2003, 23(1): 8–12. doi: 10.19341/j.cnki.issn.1009-0401.2003.01.003.
    [17]
    YOUNIS M, METZIG R, and KRIEGER G. Performance prediction of a phase synchronization link for bistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 429–433. doi: 10.1109/LGRS.2006.874163.
    [18]
    YOUNIS M, METZIG R, KRIEGER G, et al. Performance prediction and verification for the synchronization link of TanDEM-X[C]. 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 5206–5209. doi: 10.1109/IGARSS.2007.4424035.
    [19]
    LIANG Da, LIU Kaiyu, ZHANG Heng, et al. The processing framework and experimental verification for the noninterrupted synchronization scheme of LuTan-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5740–5750. doi: 10.1109/TGRS.2020.3024561.
    [20]
    LIANG Da, LIU Kaiyu, YUE Haixia, et al. An advanced non-interrupted synchronization scheme for bistatic synthetic aperture radar[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1116–1119. doi: 10.1109/IGARSS.2019.8900103.
    [21]
    LIANG Da, ZHANG Heng, LIU Kaiyu, et al. Phase synchronization techniques for bistatic and multistatic synthetic aperture radar: Accounting for frequency offset[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(3): 153–167. doi: 10.1109/MGRS.2022.3189005.
    [22]
    LIANG Da, ZHANG Heng, CAI Yonghua, et al. An advanced phase synchronization scheme based on coherent integration and waveform diversity for bistatic SAR[J]. Remote Sensing, 2021, 13(5): 981. doi: 10.3390/rs13050981.
    [23]
    RUTMAN J. Characterization of phase and frequency instabilities in precision frequency sources: Fifteen years of progress[J]. Proceedings of the IEEE, 1978, 66(9): 1048–1075. doi: 10.1109/PROC.1978.11080.
    [24]
    KRIEGER G, CASSOLA M R, YOUNIS M, et al. Impact of oscillator noise in bistatic and multistatic SAR[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea (South), 2005: 1043–1046. doi: 10.1109/IGARSS.2005.1525293.
    [25]
    JIN Guodong, ZHANG Xifeng, HUANG Jingkai, et al. High freedom parameterized FM (HFPFM) code: Model, correlation function, and advantages[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 6284–6298. doi: 10.1109/TAES.2024.3405449.
    [26]
    LIU Jiafang, ZHANG Yunhua, and DONG Xiao. Dechirping compression method for nonlinear frequency modulation waveforms[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(3): 377–381. doi: 10.1109/LGRS.2018.2875893.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(125) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint